Modul Praktikum
STRUKTURDATA

Program Studi Matematika

Fakultas Sains dan Teknologi
UIN Maulana Malik Ibrahim Malang

Lab Komputasi Program Studi Matematika

Modul 1 Struktur Data: Pengantar OOP

Pada praktikum kali ini, kita akan membahas tentang class, yang nantinya akan kita gunakan untuk
membuat berbagai jenis struktur data. Sekaligus, kita juga akan membahas tentang object-oriented
programming atau OOP (pemrograman berorientasi objek atau PBO), yaitu semacam “paradigma
pemrograman” (gaya pemrograman) di mana kita sering berurusan dengan class.

Intinya, hari ini kita akan membahas tentang class dan serba-serbi (filosofi) penggunaannya.

Apaitu class ? Apaitu OOP?

Di pertemuan sebelumnya, ketika belajar tentang tipe data di Python, kita sering menjumpai nama tipe
datadisertaiistilah class.Sebelum memahamiapaitu class, kita bisa paham dulu tentang konsep
“objek”.

Di Python (dan banyak bahasa pemrograman lainnya yang “mendukung OOP”), sebuah “objek” adalah
sesuatu yang bisa memiliki variabel-variabel tersendiri (disebut atribut) serta fungsi-fungsi tersendiri
(disebut method) di bawah satu nama yang sama (yaitu objek tersebut).

Kemudian, sebuah class adalah semacam blueprint untuk membuat objek. Ketika kita ingin membuat
objek, kita harus membuat definisi class nya terlebih dahulu sebagai blueprint untuk objek tersebut.
Barulah, setelah definisi class nya ada, kita bisa membuat objek sebanyak-banyaknya dari class yang
sama.

Sebagai blueprint untuk membuat objek, suatu definisi class mencakupi atribut serta method yang akan
terdefinisi untuk objek yang akan dibuat. Artinya, semua objek yang dibuat dari class yangsama itu akan
memiliki “struktur” yang sama, baik variabel-variabel maupun fungsi-fungsi yang terkandung di dalam tiap
objek.

(Itulah mengapa tipe data dianggap sebagai class di Python. Misalnya, untuk tipe data str,yaitu <class
'str's, semua string di Python tentunya “memiliki sifat yang sama”, seperti bisa di-format dengan method

.format)

Agar lebih paham, mari kita coba membuat class pertama kita, yaitu class Orang, untuk menyimpan
data orang yang terdiri dari nama dan umur. Kemudian, kita akan membuat beberapa objek, yaitu beberapa
Orang, yang masing-masing bisa memiliki data nama dan umur tersendiri.

class Orang:
def __init__ (self, nama, umur):
self.nama = nama
self.umur = umur

https://aslab-math-ui.github.io/modul-prak/

Pada definisi class Orang di atas, kita baru merancang atribut apa saja yang akan terkandung dalam

objek, yaitu nama dan umur.

e Pada baris pertama, kita menuliskan kata class untuk memulai suatu definisi class baru, diikuti
dengan nama class nya (disini namanya Orang).

e Pada baris kedua, kita memulai definisi suatu method istimewa yang bernama __init__ yangdimulai
dan diakhiri dengan dua garis bawah. Method yang satu ini harus selalu ada di tiap definisi class,dan
istilahnya adalah constructor. Argumen yang masuk ke dalam method ini adalah self yang merujuk ke
“diri sendiri” (objek yang bersangkutan), kemudian dua atribut yang bisa ditentukan ketika objek
dibuat, yaitu nama dan umur

e Didalamdefinisi __init__ diatas (baris ketiga dan keempat), nilai self.nama dan self.umur akan
dipasangkan menjadi nama dan umur yang “masuk ke dalam method” (yaitu ditentukan ketika objek

dibuat).

Kalau baru pertama kali lihat, mungkin syntax definisi class rasanya sangat aneh dan asing. Tidak masalah,
itu normal. Ketiknya pelan-pelan saja. Kalau belum begitu paham, juga tidak masalah, ikuti saja. Perlahan,
kita akan terus-menerus memberi tambahan ke definisi class 0Orang tersebut agar lebih paham.

Semoga menjadi lebih jelas setelah melihat syntax pembuatan objek:

orangl = Orang("Bisma", 19)
orang2 = Orang("Vero", 20)

Kemudian, kita bisa melihat atribut objek seperti berikut:

print(orangl.nama)
print(orangl.umur)

Bisma
19
print(orang2.nama)
print(orang2.umur)
Vero
20

Perhatikan bahwa masing-masing atribut diakses melalui objek yang bersangkutan. Terlihat kegunaan
objek sebagai penampung beberapa variabel (atribut) di bawah satu nama yang sama.

Selain melihat, tentunya kita juga bisa melakukan assignment:

orangl.umur = 21
print(orangl.umur)

21

Bahkan, kita bisa melakukan variasi assignment lainnya seperti biasa, misalnya +=

orangl.umur += 3
print(orangl.umur)

24

Kalau dirasa perlu, kita dapat membuat fungsi yang akan menerima suatu objek Orang lalu akan mengubah

data umur.’

def ulangtahun(orang):
orang.umur += 1

Sehingga, bisa digunakan seperti berikut:

ulangtahun(orangl)
print(orangl.umur)

25

Perhatikan bahwa objek di Python bersifat pass-by-reference! Artinya, apabila suatu objek dimasukkan ke
dalam fungsi, kemudian dimodifikasi di dalam fungsi tersebut, maka modifikasi tersebut juga berdampak

hingga di luar fungsi.

Definisi fungsi ulangtahun yang telah kita buat di atas sebenarnya bisa dimasukkan ke dalam definisi
class Orang sebagai suatu method.

class Orang:
def __init_ (self, nama, umur):
self.nama = nama
self.umur = umur
def ulangtahun(self):
self.umur += 1

Perhatikan, ini adalah pendefinisian ulang! Ini adalah definisi baru untuk class 0Orang.Sedangkan, objek-
objek yang sudah kita buat sebelumnya masih menganut definisi yang lama. Sehingga, setelah ini, kita harus
membuat ulang objek agar mengikuti definisi class Orang yang baru.

Perhatikan juga, ada sedikit perbedaan istilah pada fungsi ulangtahun:tadinya, objek yang masuk itu kita
sebut orang, sekarang kita sebut self.lIstilah self ini memang sudah menjadi kebiasaan di Python untuk
merujuk ke diri sendiri, yaitu objek yang bersangkutan. Tiap definisi method selalu harus diawali dengan
masuknya objek yang bersangkutan (yang biasa disebut self), sudah menjadi formalitas di Python.

Itulah mengapa, di definisi __init__ seolah-olah ada tiga variabel yang masuk yaitu self, nama,dan
umur, meskipun yang diperlukan ketika membuat objeknya hanyalah nama dan umur.

Mari kita buat ulang orang1:
orangl = Orang("Bisma", 19)
Kita bisa melihat atributnya:

print(orangl.nama)
print(orangl.umur)

Bisma
19

Kemudian, kita bisa menggunakan method ulangtahun yang telah kita buat, lalu melihat data umur

terbaru:

orangl.ulangtahun()
print(orangl.umur)

20

Penggunaan method memang seperti itu, sangat mirip dengan mengakses atribut, bedanya adalah bahwa
method berupa fungsi. Di sini, kita bisa melihat, baik atribut maupun method suatu objek itu sama-sama
berada di bawah satu nama yang sama, yaitu objek yang bersangkutan (di sini, baik atribut umur maupun
method ulangtahun diakses melalui orangl).

Kalau mau, kita bisa melakukannya lagi:

orangl.ulangtahun()
print(orangl.umur)

21

Tentu saja, kegunaan class tidak sebatas itu. Bahkan, ada semacam “paradigma pemrograman” (gaya
pemrograman) di mana kita sering berurusan dengan class, yang disebut OOP. Agar lebih paham juga
tentang class dan kegunaannya, kita akan mempelajari dasar-dasar OOP, yang tercakup oleh empat pilar
(tiang) OOP.

Empat pilar OOP

Empat pilar OOP adalah:

1. Encapsulation (pembungkusan)

2. Abstraction (abstraksi; kebalikan dari “mendetail”)
3. Inheritance (pewarisan sifat)

4. Polymorphism (“banyak bentuk”)

Istilah prinsip polymorphism memang sulit diterjemahkan. Kita akan membahas masing-masing keempat
prinsip OOP tersebut.

Encapsulation dan Abstraction

Sejauh ini, kita sudah merasakan bagaimana variabel (atribut) dan fungsi (method) sama-sama berada di
bawah satu nama yang sama, yaitu objek yang bersangkutan. Seolah-olah, atribut dan method tersebut
dibungkus ke dalam objek tersebut. Inilah yang dinamakan prinsip encapsulation atau pembungkusan.

Namun, ada juga konsep data hiding, di mana atribut objek sebaiknya diakses dan dimodifikasi melalui
method saja. Method untuk memperoleh (mengakses) nilai atribut tertentu disebut getter, dan method untuk
memasang nilai baru untuk atribut tertentu disebut setter.

Prinsip data hiding seringkali dianggap bagian dari prinsip encapsulation (tetapi terkadang dianggap bagian
dari abstraction yang akan kita bahas selanjutnya).

Kita akan mendefinisikan ulang class 0rang agar memiliki getter dan setter untuk atribut umur.

class Orang:
def __init_ (self, nama, umur):
self.nama = nama
self.umur = umur

def ulangtahun(self):
self.umur += 1

def get_umur(self):
return self.umur

def set_umur(self, baru):
self.umur = baru

Perhatikan bahwa method get_umur melakukan return.Penggunaannya akan mirip dengan fungsi
seperti biasanya. Kemudian, method set_umur akan menerima satu input di dalam kurungnya (sedangkan
self hanyauntuk formalitas).

Kita bisa membuat objek seperti biasa...
orangl = Orang("Bisma", 19)

Lalu kita bisa melihat umurnya seperti ini:
print(orangl.get_umur())

19

Atau bahkan kita bisa membuat variabel baru yang menyimpan umur yang diperoleh:

berapa_tahun = orangl.get_umur()
print(berapa_tahun)

19

Kemudian, kita bisa memasang nilai baru untuk atribut umur:
orangl.set_umur(30)

Lalu memperoleh kembali umur yang baru:
orangl.get_umur()

30

Sebenarnya, tujuan getter dan setter adalah untuk berjaga-jaga agar tidak terjadi hal yang aneh. Misalnya,
saat ini, kita masih bisa memasang umur menjadi negatif:

orangl.umur = -5
print(orangl.umur)

-5

Kita dapat menambahkan if statement pada definisi method set_umur didefinisi class Orang untuk
mencegah umur dipasang menjadi negatif:

class Orang:
def __init_ (self, nama, umur):
self.nama = nama
self.umur = umur
def ulangtahun(self):

self.umur += 1
def get_umur(self):
return self.umur
def set_umur(self, baru):
if baru >= 0:
self.umur = baru
else:
print("error: umur tidak bisa negatif")

Sehingga, setelah membuat objek, kita bisa mencoba:

orangl = Orang("Bisma", 19)

orangl.set_umur(-5)

error: umur tidak bisa negatif

Dengan begitu, data umur masih aman:
orangl.get_umur()

19

Sedangkan, pemasangan umur menjadi bilangan yang tidak negatif tetap berjalan dengan lancar:

orangl.set_umur(25)
print(orangl.get_umur())

25

Apakah kemudian kita masih bisa menuliskan misalnya orangl.umur = -57? Masih bisa, tetapi setidaknya,
sekarang dengan adanya getter dan setter untuk atribut umur, kita bisa menjadikan kebiasaan agar selalu
menggunakan get_umur dan set_umur ketikaingin berurusan dengan data umur, tidak lagi melalui
self.umur,agar terjamin tidak akan terjadi keanehan seperti itu. Biasanya, istilahnya, atribut umur
disebut private, karena diharapkan tidak bisa diakses dari luar secara langsung, hanya boleh melalui method.

Bahkan, kita dapat menggunakan getter dan setter di dalam definisi method lainnya. Contohnya, yang
tadinya method ulangtahun didefinisikan sebagai self.umur += 1,kita bisa menggantikannya dengan
get_umur dan set_umur:

class Orang:
def __init_ (self, nama, umur):
self.nama = nama
self.umur = umur
def ulangtahun(self):
self.set_umur(self.get_umur() + 1)
def get_umur(self):
return self.umur
def set_umur(self, baru):
if baru >= 0:
self.umur = baru
else:
print("error: umur tidak bisa negatif")

Pada definisi baru di atas untuk method ulangtahun, konsepnya sebagai berikut:

1. Peroleh umur saat inidengan self.get_umur
2. Tambah satu
3. Hasil yang baru itu dijadikan umur yang baru menggunakan self.set_umur

Saatini, orang1l masih menggunakan definisi method ulangtahun yanglama. Mari kita buat objek baru
dari definisi class Orang yang baru bernama orang3, agar bisa dibandingkan:

orang3 = Orang("Bisma", 19)
orangl.set_umur(19) # kita samakan dulu umurnya

Kemudian, kita gunakan method ulangtahun pada keduanya:

orangl.ulangtahun()
orang3.ulangtahun()

Kita bisa melihat umur baru masing-masing:

print(orangl.get_umur())
print(orang3.get_umur())

20
20

Ternyata hasilnya sama. Artinya, kedua cara mendefinisikan method ulangtahun itu memberikan hasil
yang sama.

Perhatikan bahwa, dari segi penggunaan, untuk menambahkan satu ke data umur, kita tinggal memanggil
method ulangtahun.Kita tidak perlu memikirkan internalnya seperti apa. Bahkan, kita bisa mengubah
definisinya secara internal, tetapi cara penggunaannya dari luar tetap sama.

Selain itu, untuk memasang data umur baru tanpa pusing, kita bisa langsung menggunakan set_umur.
Bahkan, kita tidak perlu mengkhawatirkan kasus umur negatif; method tersebut bisa langsung
menanganinya. Sehingga, kapanpun kita ingin memasang data umur yang baru, kita tidak perlu lagi
membuat if statement untuk memastikan umurnya tidak negatif, karena sudah ditangani oleh set_umur.

Kedua contoh method di atas menggambarkan bagaimana method bisa sangat mempermudah proses
pemrograman kita dengan objek. Prinsip abstraction menekankan penggunaan method dengan cara seperti
itu agar kita tidak perlu terlalu memusingkan detailnya. Misalnya, kita tidak perlu memusingkan cara
mendefinisikan method ulangtahun, dan kita tidak perlu memusingkan kasus umur negatif berkat adanya
method set_umur, pokoknya tinggal pakai. Lagipula, maksudnya “abstraksi” adalah kebalikan dari
“mendetail”.

Selain tidak pusing, manfaat lain dari abstraction adalah, kapanpun kita mau, kita bisa memodifikasi definisi
method di definisi class nya saja, tanpa harus mengubah kode yang menggunakan method tersebut.

Bayangkan apabila tidak ada method ulangtahun, sehingga kita menjadi harus mengubah self.umur +=
1 menjadi self.set_umur(self.get_umur() + 1) dimana-mana.Betapa ribetnya.

Inheritance (pewarisan sifat)

Sebelum belajar tentang inheritance, mari kita buat satu method lagi yaitu perkenalan:

class Orang:
def __init__ (self, nama, umur):
self.nama = nama
self.umur = umur
def ulangtahun(self):
self.set_umur(self.get_umur() + 1)
def get_umur(self):
return self.umur
def set_umur(self, baru):
if baru >= 0:
self.umur = baru
else:
print("error: umur tidak bisa negatif")
def perkenalan(self):
print("Halo, nama saya " + self.nama + " dan umur saya " + str(self.um

Seperti biasa, kita bisa membuat objek:

Orang("Bisma", 19)
Orang("Vero", 20)

orangl
orang2

Kemudian, kita bisa memanggil method perkenalan

orangl.perkenalan()
orang2.perkenalan()

Halo, nama saya Bisma dan umur saya 19 tahun.
Halo, nama saya Vero dan umur saya 20 tahun.

Lalu, misalnya, kita ingin membuat class baruyaitu class Mahasiswa,yangakan memiliki atribut
tambahan yaitu NPM.

Tentunya, mahasiswa adalah orang, sehingga kita harapkan bahwa semua yang bisa dilakukan oleh objek
dari class Orang juga bisa dilakukan oleh objek dari class Mahasiswa.

Untungnya, daripada harus copy-paste semua method yang ada di class Orang ke dalam definisi class
Mahasiswa, kita tinggal memanfaatkan inheritance (pewarisan sifat), dengan syntax yang bisa dilihat di baris
pertama di kode berikut:

class Mahasiswa(Orang):
def __init__ (self, nama, umur, NPM):
self.nama = nama
self.umur = umur
self.NPM = NPM

Sesingkat itu! Kita tinggal menyediakan constructor __init__ yangbaruyang lebih sesuai untuk class
Mahasiswa, karena adanya atribut baru yaitu NPM. Semua method lainnya akan tetap dimiliki oleh objek
dari class Mahasiswa karena sudah diwariskan dari class Orang, hanya dengan menuliskan class
Mahasiswa(Orang) pada baris pertama definisi class Mahasiswa.

class yangasli (disini class Orang) biasa disebut parent class, base class, atau superclass, sedangkan
class yang mewariskan (di sini class Mahasiswa) biasa disebut child class, derived class, atau subclass.

Kemudian, pembuatan objek dari class Mahasiswa dilakukan seperti biasa (jangan lupa, kali ini ada tiga
atribut):

mhs1l = Mahasiswa("Bisma", 19, 2106635581)
Seperti biasa, kita bisa lihat isi atributnya satu per satu:

print(mhsl.nama)
print(mhsl.umur)
print(mhs1.NPM)

Bisma
19
2106635581

Semua method yang dimiliki oleh objek 0rang itu juga dimiliki oleh objek Mahasiswa . Misalnya, kita bisa
menggunakan method ulangtahun dan get_umur:

mhs1.ulangtahun()
print(mhsl.get_umur())

20

Kita juga bisa melakukan perkenalan
mhs1.perkenalan()

Halo, nama saya Bisma dan umur saya 20 tahun.

Namun, isi perkenalannya sama persis seperti objek Orang, bahkan tidak ada keterangan NPM. Bagaimana
kalau kita mau mahasiswa melakukan perkenalan dengan NPM juga? Apakah kita bisa memodifikasi
method ini khusus untuk class Mahasiswa ? Jawabannya adalah bisa, berkat prinsip polymorphism.

Polymorphism (“banyak bentuk”)

Setelah melakukan inheritance, seandainya ada method yang diwaris yang dirasa perlu diubah atau
dibedakan dari parent class, kita tinggal mendefinisikan ulang method tersebut di dalam definisi child class
yang bersangkutan.

Misalnya, kita bisa mendefinisikan ulang method perkenalan di dalam definisi class Mahasiswa agar
berbeda dengan perkenalan di class Orang:

class Mahasiswa(Orang):
def __init__ (self, nama, umur, NPM):
self.nama = nama
self.umur = umur
self.NPM = NPM
def perkenalan(self):
print("Perkenalkan, saya " + self.nama + " dengan NPM " + str(self.NPM

Kita sudah memiliki orangl sebagai objek dari class 0Orang, sehingga bisa kita bandingkan dengan objek
dari class Mahasiswa yang perlu kita buat ulang:

mhs1l = Mahasiswa("Bisma", 19, 2106635581)
Sekarang kita lakukan perkenalan untuk masing-masing:

orangl.perkenalan()
mhs1.perkenalan()

Halo, nama saya Bisma dan umur saya 19 tahun.
Perkenalkan, saya Bisma dengan NPM 2106635581

Hasilnya berbeda, sesuai harapan. Namun, nama method nya tetap sama, yaitu perkenalan.Seolah-olah,
method perkenalan ini adalah “method yang sama” tetapi “memiliki bentuk yang berbeda-beda”, yaitu
berbeda antaradi class Orang dengan class Mahasiswa.

Bahkan, kalau mau, kita bisa membuat child class yang baru lagi dari class 0Orang, dan mendefinisikan
ulang atau “menimpa” lagi method perkenalan untuk child class tersebut. Sehingga, method perkenalan
ini seperti memiliki banyak bentuk.

“Banyak bentuk” itulah yang dimaksud dengan polymorphism. Kita bisa melakukan inheritance berkali-kali,
kemudian “menimpa” suatu method pada child class dengan definisi yang berbeda daripada di parent class.

Penerapan lain dari prinsip polymorphism adalah fitur yang bernama operator overloading, yang kebetulan
dimiliki oleh Python dan sejumlah “bahasa OOP” lainnya (bahasa yang “mendukung OOP”, yaitu memiliki
fitur class, inheritance dan sebagainya sesuai dengan empat pilar OOP).

Operator overloading
Misalnya kita membuat class Pecahan yangterdiri dari atribut pembilang dan penyebut:

class Pecahan:
def __init__ (self, pembilang, penyebut):
self.pembilang = pembilang
self.penyebut = penyebut

Kita bisa membuat pecahan setengah seperti berikut:
fracl = Pecahan(1, 2)
Kita bisa melihat isi atribut pembilang dan penyebut:

print(fracl.pembilang)
print(fracl.penyebut)

Misalnya kita ada pecahan lain...
frac2 = Pecahan(3, 5)

...alangkah indahnya kalau kita bisa menjumlahkannya begitu saja...

fracl + frac2

TypeError: unsupported operand type(s) for +: 'Pecahan' and 'Pecahan'
Terjadi error, karena saat ini, operator + belum ada artinya untuk objek Pecahan.

Akan tetapi, ada method istimewa yang bisa kita definisikan agar operator + menjadi terdefinisi, [ho!
Namanya adalah __add__

Secara matematis, penjumlahan pecahan bisa dituliskan seperti berikut:

c ad + be
d b

® ¢
b

Sehingga, kita bisa mendefinisikan method __add__ sebagai berikut:

class Pecahan:
def __init__ (self, pembilang, penyebut):
self.pembilang = pembilang
self.penyebut = penyebut
def __add__(self, pecahan2):
= self.pembilang
self.penyebut
pecahan2.pembilang
pecahan2.penyebut
atas = axd + bxc
bawah = bxd
hasil = Pecahan(atas, bawah)
return hasil

Q_no'ml
I

Lalu, kita bisa membuat ulang kedua pecahan yang tadi, mencoba menjumlahkannya, dan melihat data
atribut pembilang dan penyebut dihasil jumlahannya:

fracl
frac2

Pecahan(1, 2)
Pecahan(3, 5)

frac3 = fracl + frac2
print(frac3.pembilang)
print(frac3.penyebut)

11
10

Wow, keren! Hasilnya benar ya!

Selain penjumlahan, kita bisa mendefinisikan banyak operator lainnya untuk class.Pendefinisian
operator untuk class disebut operator overloading (“menimpa operator”), dan selalu melibatkan method
istimewa atau magic methods (juga disebut dunder methods atau double underscore methods) yang sudah
memiliki nama tertentu. Kebetulan, constructor yang dinamakan __init__ jugatermasuk magic method.

Kalian bisa membaca lebih lanjut tentang operator overloading dan magic method lainnya di link berikut:

https://www.geeksforgeeks.org/operator-overloading-in-python/

https://www.geeksforgeeks.org/operator-overloading-in-python/

Lab Komputasi Program Studi Matematika

Modul 2 Struktur Data: Array, Searching, Sorting

Pada pertemuan ini, kita akan membahas tentang operasi pada array, termasuk melihat beberapa
algoritma-algoritma searching dan sorting pada array.

Operasi pada array

Sebagian besar pembahasan di praktikum kali ini bisa menggunakan 1ist biasa atau menggunakan array
dari numpy, terutama materi searching dan sorting. Namun, untuk materi operasi pada array, kita akan
menggunakan array dari numpy .

import numpy as np

Traversal

Traversal pada array adalah “mengunjungi” elemen array satu per satu, dari awal sampai akhir. Tujuannya
bisa untuk print saja, atau untuk menjumlahkan, atau yang lain. Apapun tujuannya, kalau itu melibatkan
mengunjungi elemen array satu per satu, maka itu termasuk traversal.

Kita bisa mendeklarasikan suatu array dengan ukurannya saja, kemudian mengisi elemennya satu-per-satu.

A = np.empty(5)

print(A) # isinya masih garbage value

[0. 0.5 1. 1.5 2.]

Ale] =5
Al1] = 20
A[2] = -3
A[3] =7
Al4] = -11
print(A)

[5. 20. -3. 7. -11.]

Alternatifnya, kita bisa langsung saja menentukan elemen array sejak awal dibuat.

A = np.array(I[5, 20, -3, 7, -11])
print(A)

https://aslab-math-ui.github.io/modul-prak/

[5 20 -3 7 -11]
Berikut beberapa contoh traversal pada array.

for i in range(@, len(A)):
print(A[il)

5

20

-3

7

-11
sum = 0
for i in range(@, len(A)):

sum += A[i]

print(sum)

18

“Insertion”

Array memiliki ukuran yang tetap. Terkadang, ketika kita membuat array, belum tentu keseluruhan array itu
langsung kita gunakan semua. Bisa jadi, di awal kita hanya menggunakan sebagian saja, namun nantinya
akan kita gunakan seutuhnya. Sehingga, untuk mengelola data yang kita simpan di dalam array (sebagai
struktur data), perlu ada mekanisme “memasukkan” dan “menghapus” data pada array.

(Pembahasan “insertion” dan “deletion” pada array mungkin agak aneh, tetapi sangat masuk akal untuk
berbagai struktur data yang akan kita pelajari ke depannya, sehingga kita bahas terlebih dahulu untuk
array.

Misalkan kita hanya mendeklarasikan suatu array. Belum ada data yang dimasukkan, sehingga kita bisa
menyimpan variabel untuk “ukuran” array saat ini adalah nol.

B = np.empty(5)
B_size = 0

Saat ini, array tersebut masih sepenuhnya berisi garbage value.
print(B)
[13. 20. 3. 7. 11.]
Kita bisa memasukkan elemen, misalnya 13, seperti berikut.

insert 97
B[B_size] = 97

update data "ukuran" array,

bertambah satu karena memasukkan satu elemen baru
B_size +=1

Dengan begitu, array menjadi seperti ini:

print(B)

[97. 20. 3. 7. 11.]

Perhatikan nilai variabel “ukuran” yang kita simpan:

print(B_size)

Saat ini, baru satu elemen yang kita masukkan ke dalam array. Sehingga, semua elemen lainnya itu tidak kita

anggap, karena masih berupa garbage value (data sampah).

insert -17
B[B_size] = -17
B_size +=1

print(B)
[97. -17. 3. 7. 11.]

print(B_size)

insert 43
B[B_size] = 43
B_size +=1

print(B)
[97. -17. 43. 7. 11.1

print(B_size)

“Deletion”
Selain memasukkan data, kita juga bisa menghapus data. Kalau kita hanya ingin menghapus elemen
“terakhir” (di data kita yaitu 43), maka kita tinggal “melupakan” elemen tersebut (sehingga statusnya

menjadi garbage value) dengan mengurangi variabel “ukuran”:

delete elemen "terakhir" (dari yang sudah kita isi)
B_size = B_size -1

print(B)

[97. -17. 43. 7. 11.1

print(B_size)

2

Memang array nya tidak berubah sama sekali, tapi ini masalah mindset (hehe). Tadinya, kita mengakui
bahwa array berisi tiga buah data yang kita simpan, tetapi sekarang kita menganggap hanya berisi dua buah
data. Sehingga, data ketiga yang tadi kita anggap data, itu sekarang menjadi garbage value yang bukan
tanggung jawab kita.

Mari kita coba insert beberapa elemen lagi.

insert 53, -98, 71

B[B_size] = 53
B_size +=1

B[B_size] = -98
B_size +=1

B[B_size] = 71
B_size +=1

print(B)
[97. -17. 53. -98. 71.]
print(B_size)

5

Sekarang array sudah penuh. Bagaimana kalau misalnya kita ingin menghapus elemen pada indeks 2 (yaitu
53)? Kita perlu menggeser elemen indeks 3 menjadi indeks 2, kemudian indeks 4 menjadi indeks 3,
sehingga “ukuran” array menjadi berkurang satu (elemen terakhir menjadi garbage value).

delete elemen pada indeks 2

for i in range(2, len(B)-1):
B[i] = B[i+1]

B_size = B_size - 1

print(B)

[97. -17. -98. 71. 71.]

print(B_size)

Jangan lupa, sekarang “ukuran” data kita hanya empat buah data, sehingga elemen terakhir di situ (yang
kebetulan juga 71) adalah garbage value yang tidak kita anggap.

Searching

Algoritma searching, seperti namanya, adalah algoritma yang digunakan untuk mencari sesuatu dalam
suatu list. Umumnya, algoritma semacam ini memiliki 2 input, yaitu suatu “key” atau elemen yang ingin
dicari, dan suatu array atau list tempat pencarian key tersebut.

Terdapat 2 algoritma umum untuk searching, yaitu:

e Linear Search
e Binary Search

Linear Search

Linear search adalah algoritma searching di mana setiap elemen pada list dibandingkan satu per satu
dengan key. Pada algoritma ini, kita akan mencoba untuk mencari keberadaan key pada list, serta index dari
key tersebut (jika ada). Kalau key tidak ditemukan, kita bisa return -1 (memang sudah tradisi untuk
menandakan ketiadaan elemen pada array, lagipula mustahil ada indeks -1 pada array).

def linear_search(arr, key):
for i in range(@, len(arr)):
if arr[i] == key:
return i

sampai sini, berarti elemen tidak ditemukan
return -1

A=11,5, 2, 3, 4, 8, 7, 6, 10, 9]
linear_search(A, 8)

Binary Search

Binary search adalah algoritma searching dimana suatu list dicek apakah nilai tengahnya adalah key. Jika
tidak, list dipecah dua dan searching dilanjut tergantung posisi key relatif dari nilai tengah tersebut (apakah
lebih kecil atau lebih besar).

def binary_search(arr, key):
left_idx = 0@
right_idx = len(A)
found = False
while (not found) and (left_idx <= right_idx):
center_idx = int((left_idx + right_idx) / 2)
if arrlcenter_idx] == key:
return center_idx
elif arrlcenter_idx] > key:
right_idx = center_idx - 1
else:
left_idx = center_idx + 1
keluar loop berarti tidak ditemukan
return -1

A=1[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
binary_search(A, 14)

Sorting

Terdapat 5 algoritma umum dalam sorting yang akan dijelaskan, yaitu:

Bubble Sort
Insertion Sort

Selection Sort
Quick Sort
Merge Sort

Bubble Sort

Bubble sort adalah algoritma sorting yang cara kerjanya adalah dengan membandingkan elemen yang
bersebelahan secara berurutan, lalu ditukar jika urutannya salah. Bubble sort melibatkan beberapa kali
“pass”, yaitu beberapa kali melihat array dari awal sampai akhir.

Tentunya, bubble sort akan berhenti ketika array sudah terurut. Namun, bagaimana cara mengetahui
apakah array sudah terurut? Salah satu caranya, di tiap pass, kita bisa menganggap array sudah terurut
(ditandai dengan variabel boolean), lalu melakukan bubble sort, dan apabila ada elemen yang masih belum
terurut, maka ketika ditukar, kita menandai array tersebut belum terurut. Sedangkan, apabila semua
elemen sudah terurut (tidak terjadi pertukaran), variabel boolean tetap bernilai True, sehingga array sudah
terurut dan bubble sort sudah selesai. Untuk itu, digunakan while loop.

def bubble_sort_while(A):
n = len(A)
di awal, array belum terurut
selesai = False
while (not selesai):
di awal pass, asumsi array sudah terurut
selesai = True
for i in range(0, n-1):
jika ada elemen yang belum terurut (perlu ditukar),
if A[i] > A[i+1]:
tandai array belum terurut
selesai = False
lalu tukar
Alil, A[i+1] = A[i+1], A[i]
pass selesail

A=1[1,5, 2, 3, 4, 8, 7, 6, 10, 9]
bubble_sort_while(A)
print(A)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Sebenarnya, banyaknya pass tidak akan melebihi (n — 1). Sehingga, daripada menggunakan while loop
dan menandai array, kita bisa menggunakan for loop saja, untuk pass ke-i.

def bubble_sort_for(A):
n = len(A)
Lakukan pass sebanyak (n-1) kali, yaitu pass ke-i, i=0, 1, ..., (n-=2)

for i in range(n-1):
Iterasi untuk tiap elemen ke-j, j=0, 1, ..., (n-=2)
for j in range(n-1):
Apabila elemen ke-j ternyata lebih besar daripada yang setelahny
if A[j] > A[j+1]:
Maka tukar kedua elemen agar urutannya benar
Alj1, Alj+1] = A[j+11, A[jl

A=11,5, 2, 3, 4, 8, 7, 6, 10, 9]
bubble_sort_for(A)
print(A)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Insertion Sort

Cara kerja dari insertion sort adalah dengan membandingkan elemen baru dengan elemen sebelumnya dan
ditempatkan di tempat yang sesuai. Insertion sort mulai dari indeks ke-1, yang mana elemen pada indeks
tersebut dibandingkan dengan indeks sebelumnya. Jika posisinya tidak sesuai, maka elemen ditukar, dan
seterusnya hingga posisinya sesuai. Lalu iterasi dilanjutkan dengan elemen indeks ke-2, hingga elemen
telah diiterasi semua.

def insertion_sort(A):
n = len(A)
Untuk tiap elemen di array... (kecuali elemen paling pertama, indeks 0)
for i in range(1, n):
j=1
Selama elemen itu lebih kecil daripada elemen di sebelah kirinya,
tukar (geser elemen itu ke sebelah kirinya) agar menjadi terurut
while A[j] < A[j-1]:
Aljl, A[j-11 = A[j-11, AIlj]
j —= 1 # j berkurang karena bergeser ke kiri
Kalau elemen sudah di ujung kiri array,
udah ga ada elemen di sebelah kirinya lagi, jadi keluar aja
if j ==
break

A=1[1,5, 2, 3, 4, 8, 7, 6, 10, 9]
insertion_sort(A)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Selection Sort

Selection sort melakukan sorting dengan memasukkan nilai minimum dari suatu list. Jika diberikan suatu
list A[0.. (n — 1)], maka algoritma mencari nilai minimum dari A[0.. (n — 1)], lalu ditukar dengan
elemen A[0]. Selanjutnya algoritma mencari nilai minimum dari A[1.. (n — 1)], lalu ditukar dengan

elemen A[1], dan seterusnya.

def selection_sort(A):
n = len(A)
Untuk tiap elemen ke-i, akan ditukarkan dengan elemen minimum yang
ada di sebelah kanannya

for i in range(n-1):
Asumsi awal: elemen yang sedang dilihat (elemen ke-i) adalah minimum
min_idx = i
min_val = A[min_idx]

Periksa masing-masing elemen selanjutnya...
for j in range(i+1, n):
Kalau ternyata ketemu elemen yang lebih kecil lagi...
if A[j] < min_val:
... maka itu menjadi minimum yang terbaru
min_val = A[j]
min_idx = j
Ketika keluar for loop, sudah diperoleh elemen minimum sesungguhnya
Tukar elemen minimum dengan elemen ke-i
Ali]l, Almin_idx] = Almin_idx], A[i]

A=11,5, 2,3, 4,8, 7,6, 10, 9]
selection_sort(A)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Merge Sort

Merge sort melakukan sort dengan memecah list menjadi dua secara rekursif. Lalu sorting dilakukan
dengan melakukan merge pada hasil pecahan list. Merge adalah proses pada dua list yang menyatukan dua
list terurut menjadi satu list terurut. Merge dilakukan hingga list utuh kembali.

def merge_sort(A):
n = len(A)
Seandainya hanya berisi satu elemen, tidak perlu dilakukan apa-apa
if len(A) > 1:
indeks middle (elemen tengah)

m = int(n/2)

Array A dipisah menjadi Al (sebelah kiri) dan A2 (sebelah kanan)
Al = Al:m]

A2 = Alm:]

Lakukan merge sort pada keduanya
merge_sort(Al)
merge_sort(A2)

H*

Di bawah ini adalah proses penggabungan dari Al dan A2 yang
masing-masing sudah terurut

i =0 # indeks untuk Al
j = 0 # indeks untuk A2
k = @ # indeks untuk array/list baru yang nantinya sudah terurut

Loop selama kedua array masih punya elemen yang
belum dimasukkan ke array/list baru
while i < len(Al) and j < len(A2):
Kalau ternyata elemen pada Al yang lebih kecil...
if AL[i] <= A2[j]:
... maka itulah yang dimasukkan ke array/list baru
Alk] = A1[i]
i += 1 # lanjut ke elemen berikutnya untuk Al

Selain itu, berarti elemen pada A2 yang lebih kecil...
else:
... maka itulah yang dimasukkan
ATkl = A2[jl
j += 1 # lanjut ke elemen berikutnya untuk A2
Ukuran array baru sudah bertambah satu
k += 1
Keluar loop, berarti salah satu array sudah habis
Ada dua kemungkinan, yaitu Al yang belum habis, atau A2 yang belum.
Sehingga keduanya perlu "dihabiskan"

Menghabiskan Al kalau belum habis
while i < len(Al):
Alk] = A1[i]
i+=
k +=

==l

Menghabiskan A2 kalau belum habis
while j < len(A2):

ATkl = A2[jl

j =1

k += 1

A=1[1,5,2,3, 4,38,7, 6, 10, 9]
merge_sort(A)
print(A)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Quicksort
Secara keseluruhan, algoritma quicksort (yang bersifat rekursif) terdiri dari langkah berikut:
1. Apabila array kosong atau terdiri dari satu elemen, sorting selesai. Selain itu, lanjut ke langkah berikut.

2. Pilih salah satu elemen di array sebagai “pivot” (Bebas, yang penting konsisten. Biasanya elemen
pertama. Kemungkinan lain: elemen tengah, elemen terakhir, dsb)

3. Lakukan “partisi”, yaitu proses yang membuat kondisi array menjadi seperti berikut:

| semua elemen yang | pivot | semua elemen yang |
| lebih kecil dari pivot | | lebih besar dari pivot |

4. Lakukan quicksort pada sebelah kiri pivot dan pada sebelah kanan pivot.

Untuk proses “partisi”, ada dua cara utama untuk melakukannya (algoritma partisi), yaitu algoritma partisi
Hoare dan algoritma partisi Lomuto.

Quicksort dengan partisi Hoare

def partition_hoare(A, left_idx, right_idx):
Buat "pointer" low dan high (simpan indeksnya saja)
low_idx = left_idx
high_idx = right_idx

Diasumsikan array sudah terpartisi dengan baik (padahal belom hehe),

- tugas low adalah memeriksa dari kiri (apakah benar sudah dipartisi),
— tugas high adalah memeriksa dari kanan.

Sudah terpartisi artinya:

- sebelah kiri pivot adalah yang lebih kecil dari pivot

- sebelah kanan pivot adalah yang lebih besar dari pivot

HOH K R R R

Pilih indeks pivot, bebas, misal elemen paling pertama (paling kiri)
pivot_idx = left_idx
pivot_val = A[pivot_idx]

Loop selama low belum melewati high
(syarat ini sangat penting, hingga diperiksa berkali-kali)
while low_idx <= high_idx:

low lanjut ke kanan hingga menemukan elemen yang posisinya salah,

yaitu elemen yang nilainya lebih besar dari pivot

while (low_idx <= high_idx) and not (A[low_idx] > pivot_val):
low_idx += 1

high lanjut ke kiri hingga menemukan elemen yang posisinya salah,

yaitu elemen yang nilainya lebih kecil dari pivot

while (low_idx <= high_idx) and not (A[high_idx] < pivot_val):
high_idx —=1

low dan high sama-sama menunjuk pada elemen yang posisinya salah,
keduanya akan menjadi benar kalau posisinya ditukar
if low_idx <= high_idx:

Allow_idx], Alhigh_idx] = A[high_idx], A[low_idx]

Apabila elemen pivot ternyata ikut ditukar,

pastikan data posisinya (pivot_idx) di-update.

if pivot_idx == low_idx: # Apabila tadinya pivot di low,
pivot_idx = high_idx # maka sekarang pivot di high.

elif pivot_idx == high_idx: # Namun apabila tadinya pivot di high,
pivot_idx = low_idx # maka sekarang pivot di low.

Kalau sudah keluar loop, berarti low sudah melewati high;

Sudah ketemu garis baginya, yaitu antara low dan high.

Saat ini, sebelah kiri garis bagi sudah lebih kecil dari pivot,
dan sebelah kanan garis bagi sudah lebih besar dari pivot.

Sekarang kita tinggal menempatkan pivot pada garis bagi tersebut

Tukar pivot dengan high kalau pivot di sebelah kiri high,
if pivot_idx <= high_idx:
Alpivot_idx], A[high_idx] = A[high_idx], Al[pivot_idx]
pivot_idx = high_idx

atau tukar pivot dengan low kalau pivot di sebelah kanan low
else:
Alpivot_idx], A[low_idx] = A[low_idx], Alpivot_idx]
pivot_idx = low_idx

Partisi sudah selesai, return posisi pivot
supaya jadi tahu di mana garis baginya
return pivot_idx

def quicksort_hoare(A, left_idx=None, right_idx=None):
Kalau left_idx dan right_idx tidak diinput, otomatis menjadi None
dan kalau begitu, berarti sebenarnya quicksort mau dilakukan pada
keseluruhan array, sehingga ujung kiri adalah indeks @ dan
ujung kanan adalah indeks terakhir (n-1 di mana n adalah panjang array)
if left_idx == None:
left_idx = 0
if right_idx == None:
right_idx = len(A) - 1

Ada if statement untuk memastikan ujung kiri dan ujung kanan masih wajar
if left_idx < right_idx:

pivot_idx = partition_hoare(A, left_idx, right_idx)

quicksort_hoare(A, left_idx, pivot_idx-1)

quicksort_hoare(A, pivot_idx+1, right_idx)
Kalau sewaktu-waktu menjadi tidak wajar, berarti array kosong, berarti
quicksort sudah selesai dan tidak perlu dilakukan apa-apa lagi

A=1[1,5, 2, 3, 4, 8, 7, 6, 10, 9]
quicksort_hoare(A)
print(A)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Quicksort dengan partisi Lomuto

def partition_lomuto(A, left_idx, right_idx):
Pilih elemen pivot, sepertinya untuk Lomuto harus elemen terakhir
pivot_idx = right_idx
pivot_val = A[pivot_idx]

Asumsi awal: semua elemen lebih besar dari nilai pivot,

sehingga "separator" atau '"garis pemisah" ada di ujung Kkiri,
bahkan di sebelah kiri elemen pertama

sep = left_idx - 1

Periksa tiap elemen...
for j in range(left_idx, right_idx):
Kalau ternyata ada elemen yang tidak lebih besar dari pivot...
if A[j] <= pivot_val:
Majukan garis pemisah...
sep = sep + 1
Lalu tukar elemen itu (yang seharusnya di sebelah kiri pivot),
agar menjadi di (sebelah kiri) garis pemisah
Alsepl, Alj]l = Aljl, Alsepl
Nantinya, pivot akan diletakkan di posisi indeks sep+1.
Data indeks "sep" menunjuk pada indeks terakhir yang
elemennya lebih kecil dari pivot.

Keluar for loop, sekarang semua elemen sudah diperiksa,

indeks sep menunjuk pada elemen terakhir yang lebih kecil dari pivot.
Maka, pivot bisa diletakkan di posisi sep+1l.

Tukar elemen pivot dengan elemen apapun yang sedang di sep+l.
Alsep+1], Alpivot_idx] = Al[pivot_idx], Alsep+1]

Sekarang, pivot ada di sep+l
pivot_idx = sep+1

Partisi sudah selesai, return posisi pivot
supaya jadi tahu di mana garis baginya
return pivot_idx

def quicksort_lomuto(A, left_idx=None, right_idx=None):
if left_idx == None:
left_idx = 0
if right_idx == None:
right_idx = len(A) - 1

if left_idx < right_idx:
pivot_idx = partition_lomuto(A, left_idx, right_idx)
quicksort_lomuto(A, left_idx, pivot_idx - 1)
quicksort_lomuto(A, pivot_idx + 1, right_idx)

A=1[1,5, 2, 3, 4, 8, 7, 6, 10, 9]
quicksort_lomuto(A)
print(A)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Perhatikan bahwa, meskipun algoritma partisi Hoare dan partisi Lomuto sangat berbeda, ketika di fungsi
quicksort (quicksort_hoare dan quicksort_lomuto), kodenya sama, hanya berbeda di fungsi partisi
yang digunakan.

Lab Komputasi Program Studi Matematika

Modul 3 Struktur Data: Graphviz, Linked List

Pada praktikum kali ini, kita akan membahas mengenai linked list, serta cara memvisualisasikannya
menggunakan yang namanya Graphviz.

Sebelum mengikuti praktikum ini, ada baiknya kalian me-review kembali modul berikut:

e Modul 1: Pengantar OOP

Untuk apa? Kita akan menyusun struktur data linked list menggunakan class :) semoga kalian sudah cukup
paham tentang class yaa. Kalau belum pun, semoga kalian akan lebih paham setelah praktikum kali ini :D

Graphviz

Graphviz adalah semacam software yang bisa membuat visualisasi “graf” yang bagus. Mungkin di antara
kalian belum semuanya kenal dengan graf, itu tidak masalah. Kurang lebih, suatu graf adalah kumpulan
bulet-bulet (disebut simpul, node, atau vertex) yang disambung oleh “busur” (juga disebut arc atau edge), di
mana tiap edge bisa berupa garis biasa atau berupa panah.

Berikut contoh graf yang digambar dengan Graphviz:

https://aslab-math-ui.github.io/modul-prak/semuahalaman/modulprak/2023/ganjil/strukdat_py/Strukdat2023_Modul05.html
https://aslab-math-ui.github.io/modul-prak/

tes

qwerty

Lho, di mata kuliah Struktur Data kan ga ada graf. Untuk apa kita pelajari Graphviz?

Dengan Graphviz, kita bisa membuat visualisasi untuk berbagai struktur data nantinya, termasuk linked list
hari ini. Kita bisa meminta Graphviz untuk membuat bentuk node yang tidak sederhana, termasuk bentuk
node yang kita kenal di linked list, kemudian membuat edge yang berupa panah, sehingga kita benar-benar
bisa menggambarkan suatu linked list :)

Instalasi Graphviz

Sebelum bisa menggunakan Graphviz, perlu di-install terlebih dahulu.

Di Google Colaboratory, kalian tinggal mengetik:

pip install graphviz

Sedangkan, apabila menggunakan Jupyter Notebook melalui Anaconda, buka Anaconda Prompt lalu ketik:
conda install graphviz

Tunggu instalasi selesai, barulah buka Jupyter Notebook dan ketik

pip install graphviz

Note:

e Apabila Anda menggunakan Jupyter Notebook tetapi tidak melalui Anaconda, langkah conda
install graphviz bisadigantikan dengan menginstal Graphviz dari
https://graphviz.gitlab.io/download/

e Untuk penulisan pip, ada kemungkinan kalian perlu mengetik !pip dengantanda seru diawal.
Biasanya tidak perlu, tapi kalau menjadi error, boleh dicoba dengan tanda seru.

https://graphviz.gitlab.io/download/

Mengenal Graphviz: node dan edge

Setelah instalasi selesai, kita bisa import:
import graphviz as gv

Dengan Graphviz, ada dua jenis gambar graf yang bisa kita buat:

e Digraph (graf berarah, yaitu tiap edge bisa berupa panah maupun garis biasa)
e Graph (graf sederhana, yaitu tiap edge hanya bisa berupa garis biasa, bukan panah)

Karena Digraph lebih banyak fiturnya, kita akan membuat Digraph saja.

Sebagai contoh sederhana, kita bisa membuat Digraph yang terdiri dari dua node yaitu A dan B, dengan
edge berupa panah yang menghubungkan A ke B. Kita buat objek Digraph terlebih dahulu:

grafl = gv.Digraph()
Kemudian, kita bisa menambahkan node A dan B sebagai berikut:

grafl.node("A")
grafl.node("B")

Selanjutnya, kita bisa membuat/menambahkan suatu edge dari A ke B, seperti berikut:
grafl.edge(llAll' IIBII)
Sekarang kita bisa lihat grafnya:

display(grafl)

Note: apabila fungsi display tidak dikenal, silakan import:
from IPython.display import display

Sebenarnya, kita bisa saja menambahkan edge baru tanpa membuat node terlebih dahulu. Contohnya,
menambahkan edge dari A ke C (suatu node baru):

grafl.edge("A", "C")
Kita bisa lihat lagi:

display(grafl)

Bahkan, kita bisa membuat ulang graf di atas dengan cara seperti berikut:

graf2 = gv.Digraph()
grafz-edge(llAII' IIBII)
graf2.edge("A", "C")

display(graf2)

Menariknya, kita bisa saja membuat panah yang menunjuk ke dirinya sendiri.

graf3 = gv.Digraph()
graf3.edge("A", "B")
graf3.edge("B", "B")

display(graf3)

Kita juga bisa membuat dua panah berlawanan arah di antara dua node seperti berikut:

graf4 = gv.Digraph()
graf4.edge("A", "B")
graf4.edge(llB||’ IIAII)

display(graf4)

Membuat satu panah yang dua arah juga bisa, dengan menentukan dir atau direction dari edge tersebut
menjadi "both" seperti berikut:

graf5 = gv.Digraph()
graf5.edge("A", "B", dir="both")

display(graf5)

Daripada panah, kita juga bisa membuat edge berupa garis biasa, dengan dir="none" (bukan None ya!)

grafé = gv.Digraph()
graf6.edge("A", "B", dir="none")

display(graf6)

Sejauh ini, grafnya selalu cenderung “dari atas ke bawah”. Daripada seperti itu, kita bisa mengubahnya
menijadi kiri ke kanan untuk keseluruhan graf. Caranya, kita memasang graph_attr atau atribut graf,
berbentuk dict,dandidalamnya kita buat "rankdir": "LR" (left-right) seperti di bawah ini.

Setelah objek Digraph dibuat, barulah tiap edge yang kita tambahkan akan dari kiri ke kanan.

graf7 = gv.Digraph(graph_attr={"rankdir": "LR"})
graf7.edge("A", "B")

display(graf7)

Selain node diberi nama, edge juga bisa diberi keterangan, Iho! Caranya, pasang nilai label ketika membuat
edge baru:

graf8 = gv.Digraph(graph_attr={"rankdir": "LR"})
graf8.edge("A", "B", label="test")

display(graf8)

(=

Sebenarnya, di dalam suatu node, ada yang namanya name (atau ID) dan ada juga yang disebut label.

e label adalah tulisan yang tampil di gambar pada node tersebut
e name atau ID adalah sebutan yang dikenal oleh Graphviz ketika misalnya ingin membuat edge

Selamaini, yang kita tentukan adalah name . Kebetulan, khusus node, apabila 1abel tidak ditentukan, maka
otomatis akan diambil dari name.

Berikut ini, kita bisa coba menentukan name dan label sekaligus ketika membuat node:

graf9 = gv.Digraph()
graf9.node("matkull", label="Alprog")
graf9.node("matkul2", label="Strukdat")
graf9.edge("matkull", "matkul2")

display(graf9)

Alprog

Perlu dicatat, apabila kita menambahkan edge sekaligus membuat node baru, kita tidak bisa memasang
label untuk node baru tersebut.

Sehingga, apabila kalian ingin membuat node dengan label tertentu, yang nantinya akan disambung ke
node lain dengan edge, maka sebaiknya node baru tersebut dibuat dengan .node() terlebih dahulu, barulah
name nya digunakan ketika membuat .edge()

Selain itu, bahkan graf itu sendiri juga bisa memiliki nama, yang ditentukan ketika membuat objek grafnya.

grafle = gv.Digraph("Nama graf")
grafl@.edge("A"' IIBII)

grafl0.edge("B", "C")

display(graf1e)

”

Coba letakkan mouse kalian pada gambarnya selama beberapa detik. Akan muncul tulisan “Nama graf”.
(Kalau tidak muncul, coba klik kanan dulu, pencet “Open image in New Tab” atau semacamnya.)

Apabila kalian ingin menentukan misalnya rankdir, tuliskan setelah nama grafnya.

grafll = gv.Digraph("Graf ke kanan", graph_attr={"rankdir": "LR"})
grafll.edge("A", "B")
grafll.edge("B", "C")

display(graf1l)

Import/export, bahasa DOT, file .gv

Sebenarnya, Graphviz melibatkan yang namanya bahasa DOT (dibaca “dot”), yaitu semacam “bahasa
komputer” untuk mendeskripsikan graf, yang kemudian diolah oleh Graphviz menjadi gambar.

(Sebenarnya, bahasa DOT mudah dipahami dan bisa kalian pelajari sendiri kalo iseng :D)

Tiap kali kita membuat graf baru dengan Graphviz melalui Python ini, Graphviz selalu menyusun bahasa
DOT terlebih dahulu, baru mengolah bahasa DOT tersebut menjadi gambar.

Kita bisa melihat bahasa DOT untuk tiap graf melalui atribut .source seperti berikut:
print(grafll.source)

digraph "Graf ke kanan" {
graph [rankdir=LR]
A—>B
B—>C

Kemudian, kita bisa memasukkan bahasa DOT tersebut ke dalam semacam software yang bisa mengolah
bahasa DOT menjadi gambar. Contohnya adalah link berikut:

https://dreampuf.github.io/GraphvizOnline/

Sebaliknya, dari bahasa DOT, Graphviz juga bisa membuat objek Digraph misalnya, menggunakan
graphviz.Source() sepertiberikut:

grafl2 = gv.Source("""
digraph "Graf ke kanan" {
graph [rankdir=LR]

A —>B

B —>C
¥
min)
display(grafi12)

Selain import seperti itu, baik bahasa DOT maupun gambar yang dibuat oleh Graphviz bisa di-export
dengan menetapkan . format terlebih dahulu (misalnya “svg” atau “png”), lalu menggunakan . render()
sebagai berikut:

grafll.format = "svg"
grafll.render()

'Graf ke kanan.gv.svg'
Seperti di Modul 3 kemarin ketika membahas I/0, ada file baru yang muncul.

e Apabila menggunakan Google Colaboratory, silakan tekan tombol folder di sebelah kiri.
o Apabila menggunakan Jupyter Notebook, silakan periksa folder yang di dalamnya ada file . ipynb
yang sedang kalian gunakan.

Akan muncul dua file baru, yaitu:

1. Graf ke kanan.gv
2. Graf ke kanan.gv.svg

File pertama adalah file . gv (Graphviz) yang mengandung bahasa DOT yang disusun sebelum diolah
menjadi gambar. File kedua adalah file gambar yang diolah, dalam format sesuai dengan yang kita tentukan.

Kita bisamembacaisi Graf ke kanan.gv sebagaimana kita membaca isi text file:

with open("Graf ke kanan.gv'", "r") as isi:
print(isi.read())

digraph "Graf ke kanan" {
graph [rankdir=LR]
A —>B

https://dreampuf.github.io/GraphvizOnline/
https://aslab-math-ui.github.io/modul-prak/semuahalaman/modulprak/2023/ganjil/strukdat_py/Strukdat2023_Modul03.html

B —> C
}
Selain itu, perhatikan bahwa nama file nya sesuai dengan nama graf yang kita tentukan ketika membuat
objek grafi11 tadi. Kalau lupa, kita bisa memeriksa nama graf melalui atribut . nama

print(grafll.name)

Graf ke kanan

Dengan atribut itu pula, kita bisa mengubah nama grafnya:

grafll.name = "Nama baru"

Sehingga, ketika misalnya Graphviz menyusun bahasa DOT, akan digunakan nama yang baru:
print(grafll.source)

digraph "Nama baru" {
graph [rankdir=LR]
A—>B
B—>C

Variasi node dengan HTML-like labels

Ingat atribut label yang bisa dipasang ketika membuat suatu node? Sebenarnya, kita bisa memanfaatkan
atribut tersebut untuk membuat bentuk node sesuka hati kita, Iho! Terutama, kita bisa membuat node
dengan bentuk seperti tabel.

Penulisan label sepertitabel ini mirip seperti struktur bahasa HTML, sehingga disebut HTML-like labels.

Perhatikan syntax (penulisan) berikut.

grafl3 = gv.Digraph()
grafl3.node("A", shape="none", label=""'"<
<TABLE>
<TR>
<TD>P</TD>
<TD>Q</TD>
</TR>
<TR>
<TD>R</TD>
<TD>S</TD>
</TR>
</TABLE>

>||||||)

grafl3.node("B") # node biasa
grafl3.edge("A", "B")

display(grafi13)

Perhatikan,

1. Ketika membuat node yang ingin berbentuk tabel, ditambahkan atribut shape="none" (bukan None)
di samping menulis label nya.

2. label berupa long string, sehingga diawali dan diakhiri dengan tiga tanda kutip.

3. Karakter pertama dari long string tersebut haruslah < dan karakter terakhir haruslah >

4. Kemudian, penulisan tabel diawali dengan penulisan <TABLE>, kemudian <TR> (table row) untuk tiap
baris, lalu <TD> (table data) untuk tiap sel. Masing-masing selalu ditutup dengan </TD>, </TR>, dan
</TABLE>, bagaikan keberadaan endif, endfor, endwhile dansebagainya di pseudocode.

Agar lebih bagus, di bagian <TABLE> kita bisa menambahkan:
BORDER="0" CELLBORDER="1" CELLSPACING="0"

Seperti berikut:

grafl4 = gv.Digraph()
grafl4.node("A", shape="none", label="""<
<TABLE BORDER="@" CELLBORDER="1" CELLSPACING="0">
<TR>
<TD>P</TD>
<TD>Q</TD>
</TR>
<TR>
<TD>R</TD>
<TD>S</TD>
</TR>
</TABLE>

>IIIIII)

grafl4.node("B")
grafl4.edge("A", "B")

display(grafi4)

o
(&

Bagaimana kalau misalnya kita ingin panahnya seperti “berasal” dari sel tertentu? Caranya, kita bisa
membuat yang namanya port, misalnya di sel R, kemudian edge yang dibuat akan kita sambung dari port
tersebut, seperti berikut:

grafl5 = gv.Digraph()
grafl5.node("A", shape="none", label="""<
<TABLE BORDER="@" CELLBORDER="1" CELLSPACING="0">
<TR>
<TD>P</TD>
<TD>Q</TD>
</TR>
<TR>
<TD PORT="portl">R</TD>
<TD>S</TD>
</TR>
</TABLE>
St

grafl5.node("B")
grafl5.edge("A:portl", "B")

display(graf15)

Kalau di Microsoft Excel atau Google Sheets, kita bisa melakukan merge beberapa sel, entah secara
horizontal atau vertikal atau bahkan dua-duanya. Ketika menyusun HTML-like labels, kita bisa menggunakan
COLSPAN (merentang beberapa kolom) dan ROWSPAN (merentang beberapa baris) untuk membuat efek
seperti di-merge.

grafl6 = gv.Digraph()
grafl6.node("A", shape="none", label="""<
<TABLE BORDER="@" CELLBORDER="1" CELLSPACING="0">
<TR>
<TD ROWSPAN="2">P</TD>
<TD COLSPAN="2">Q</TD>

</TR>
<TR>
<TD>R</TD>
<TD>S</TD>
</TR>
</TABLE>
St

grafl6.node("B")
grafl6.edge("A", "B")

display(graf16)

(Singly) Linked List

Singly-linked list (seringkali disebut linked list saja) adalah semacam “rantai” dari node, di mana tiap node
berisi 2 nilai, yaitu data dan next (yaitu pointer ke node lain). Node yang paling pertama itu ditunjuk oleh
suatu pointer bernama head, yang menjadi awal dari linked list.

(Terkadang, pointer next ditulis LINK. Artinya dan kegunaannya sama.)

Pertama-tama, kita buat struktur node terlebih dahulu menggunakan class. (Apabila pointer next tidak
menunjuk ke apapun, biasanya ditulis NULL atau di sini None.)

Biasanya, di kuliah, disebutnya class Node atau Node saja. Namun, berhubung modul ini akan membahas
doubly-linked list dengan struktur yang agak berbeda, maka node untuk singly-linked list akan kita sebut
SLNode (singly-linked node) agar berbeda.

class SLNode:
def __init__ (self, data, next=None):
self.data = data
self.next = next

Kita bisa bermain-main dengan node ini sebagaimana yang dibahas di kuliah. Misalnya, kita buat node baru
yang menyimpan data 15:

p = SLNode(15)

Saat ini, node tersebut ditunjuk oleh pointer yang di sini kita sebut p.Secara tidak langsung, kita telah
membuat linked list dengan head nyaadalah p.

Kita bisa mengakses data yang disimpan di data dan juga alamat yang tersimpan di next :
print(p.data)

15
print(p.next)

None

Saat ini, node yang ditunjuk oleh p itu belum menunjuk ke manapun, sehingga p.next masih bernilai
None.

Kita bisa melihat alamat dari node itu sendiri menggunakan id:
print(id(p))

4404463888

Alamat ini akan selalu berbeda tiap kali kita membuat node baru, dan di antara dua komputer kemungkinan
besar juga berbeda. Memang wajar apabila alamat yang kalian dapatkan itu berbeda dengan yang tertera di
modul.

Namun, alamat biasanya ditampilkan dalam bentuk heksadesimal (base-16), sedangkan yang kita dapatkan
dengan id masih berupa bilangan bulat desimal (base-10). Kita bisa menggunakan hex untuk mengubah
base-10 menjadi base-16:

print(hex(id(p)))

0x10686¢c910
Awalan 0x itu hanya penanda bahwa bilangannya berupa heksadesimal.

Selanjutnya, kita bisa membuat node baru di p.next, yaitu yang ditunjuk oleh p, sebagai berikut:
p.next = SLNode(28)

Sehingga, data 28 itu bisa diakses dari p seperti berikut:
print(p.next.data)

28

Sedangkan, setelah node berisi 15 dan node berisi 28, belum ada node lagi, sehingga:

print(p.next.next)

None

Mari kita buat node baru lagi setelah node berisi 28:

p.next.next = SLNode(-3)
Sehingga, kita bisa mengakses data masing-masing node dari p:

print(p.data)
print(p.next.data)
print(p.next.next.data)

15
28
-3

Kita bisa juga membuat pointer baru yang menunjuk ke node yang sudah ada. Misalnya, kita bisa membuat
pointer bernama q yang menunjuk ke node yang berisi 28, seperti berikut:

g = p.next
Sehingga, p.next.next bisadiakses dengan q.next:

print(p.next.next.data)
print(qg.next.data)

-3
-3

Bahkan, kita bisa mengubah data -3 menjadi yang lain melalui q, dan itu akan berubah juga jika diakses

melalui p:
g.next.data = -63
print(q.next.data)
print(p.next.next.data)

-63
-63

Kok bisa? Karena, sesuai yang sudah kita tetapkan, g menunjuk ke node yang sama dengan p.next.Kita

bisa periksa alamatnya:

print(hex(id(q)))
print(hex(id(p.next)))

0x10686d780
0x10686d780

Sehingga alamat dari node yang ditunjuk oleh q.next akan sama dengan yang ditunjuk oleh p.next.next:

print(hex(id(qg.next)))
print(hex(id(p.next.next)))

0x10686d000
0x10686d000

Sejauh ini, kita sudah bermain dengan node dan membuat linked list secara manual. Sebenarnya, kita juga
bisa membuat suatu class untuk suatu linked list secara keseluruhan. Didalam class itu, kita bisa
membuat atribut (variabel) yang menyimpan head, serta berbagai method (fungsi) untuk algoritma-
algoritma operasi dasar yang kita pelajari di kuliah, seperti insert node di awal/akhir dan delete node di

awal/akhir. Dengan begitu, kita bisa menggunakan linked list dengan lebih nyaman.

Kita akan menyebutnya class SLList (singly-linked list).

class SLList:
def __init_ (self):
self.head = None

def is_empty(self):
if self.head == None:
return True

else:

return False

Traversal, hanya untuk menghitung banyaknya node di linked list

def get_size(self):
count = 0
current = self.head
while current != None:
count +=1

current = current.next
return count

Traversal, print masing-masing data node dari awal sampai akhir
def print_all(self):
print("head —> ", end="")
temp = self.head
while temp != None:
print(temp.data, end = " —> ")
temp = temp.next
print("None")

Traversal, semacam linear search, cari letak node dengan data tertentu
def get_pos(self, x):
pos = -1
current = self.head
while current != None:
pos += 1
if current.data ==
return pos
current = current.next
return -1

def ins_front(self, newdata):
newnode = SLNode(newdata)
newnode.next = self.head
self.head = newnode

def ins_end(self, newdata):
newnode = SLNode(newdata)
if self.is_empty():
self.head = newnode
else:
temp = self.head
while temp.next != None:
temp = temp.next

sekarang temp sudah di node terakhir
temp.next = newnode

def ins_pos(self, newdata, pos):
if pos ==
self.ins_front(newdata)
else:
current_pos = 0
current = self.head
while (current != None) and (current_pos != pos-1):
current = current.next
current_pos += 1

Keluar loop, bisa karena current == None atau current_pos == pos

Kalau karena current_pos == pos-1, bisa insert
if (current_pos == pos-1):

newnode = SLNode(newdata)

temp = current.next

current.next = newnode

newnode.next = temp

Tapi kalau karena current == None,
berarti posisi yang diminta melampaui panjang linked list
else:

print("Error: posisi melebihi panjang linked list")

def del_front(self):
if self.is_empty():
print("Error: linked list sudah kosong")
else:
temp = self.head.next
del self.head
self.head = temp

def del_end(self):
if self.is_empty():
print("Error: linked list sudah kosong")
else:
temp = self.head
while temp.next.next != None:
temp = temp.next

sekarang temp ada di node sebelum terakhir
del temp.next
temp.next = None

Mirip ins_pos, hanya berbeda di bagian current_pos == pos-1
def del_pos(self, pos):
if pos ==
self.del_front()
else:
current_pos = 0
current = self.head
while (current != None) and (current_pos != pos-1):
current = current.next
current_pos += 1

Keluar loop, bisa karena current == None atau current_pos == pos
Kalau karena current_pos == pos-1, maka bisa dihapus selama

current.next yang mau dihapus itu memang ada

if (current_pos == pos-1) and (current.next != None):
temp = current.next.next
del current.next
current.next = temp

Tapi kalau karena current == None, atau current.next tidak ada,

berarti posisi yang diminta melampaui panjang linked list
else:
print("Error: posisi melebihi panjang linked list")

Menghapus semua node di linked list
def del_all(self):
while (not self.is_empty()):

self.del_front()

Method untuk memperoleh digraph yang menggambarkan linked 1list nya :D
def get_digraph(self):

Buat digraph baru yang sifatnya dari kiri ke kanan

new_digraph = gv.Digraph(graph_attr={"rankdir": "LR"})

Pointer untuk menunjuk ke tiap node, mulai dari node pertama
(akan dilakukan traversal)
current = self.head

Untuk menghitung node ke-sekian untuk nama node di Graphviz,
sehingga head menunjuk ke node@, lalu node@ menunjuk ke nodel, dst
counter = 0

Memperoleh alamat yang sedang disimpan di head
— asumsi awal: tidak ada alamat (None)
next_id = None

next_name = "node®@" # ini nanti untuk nama node berikutnya di Graphviz
- kalau ternyata ada alamat...
if current != None:

maka simpan alamat tersebut

next_id = hex(id(current))

kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
next_name = "node@:id"

Label (tabel) untuk pointer head

— pembuka tabel

str_label = "<"

str_label += "<TABLE BORDER=\"Q\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
— baris head

str_label += "<TR><TD>head</TD></TR>"

— baris alamat (sekalian membuat port namanya "contents")

str_label += "<TR><TD PORT=\"contents\">" + str(next_id) + "</TD></TR>
— penutup tabel

str_label += "</TABLE>"

str_label += ">"

Membuat node head, membuat edge dari head ke node berikutnya
new_digraph.node('"head", shape="none", label=str_label)
new_digraph.edge('"head:contents", next_name)

dari port "contents" ke node berikutnya, yang namanya next_name

Selama node yang ditunjuk bukan None, buatlah node nya di Graphviz,
lalu lanjut ke node selanjutnya (ini traversal)
while current != None:
Alamat yang tersimpan pada current.next
— asumsi awal: tidak ada alamat; current adalah node terakhir
next_id = None
— kalau ternyata ada alamat...
if current.next != None:
maka simpan alamat tersebut
next_id = hex(id(current.next))

Persiapan label (tabel) untuk node
— pembuka tabel
str_label = "<"

test

test.
test.
test.

test

test

str_label += "<TABLE BORDER=\"@\" CELLBORDER=\"1\" CELLSPACING=\"0
- baris tulisan "data", '"next"

str_label += "<TR><TD>data</TD><TD>next</TD></TR>"

— baris untuk isi data dan isi next

str_label += "<TR>"

str_label += "<TD>" + str(current.data) + "</TD>"
str_label += "<TD PORT=\"next\">" + str(next_id) + "</TD>"
str_label += "</TR>"

— baris tulisan "alamat node", merentang dua kolom
str_label += "<TR><TD COLSPAN=\"2\">alamat node</TD></TR>"
— baris untuk isi alamat node, merentang dua kolom
str_label += "<TR>"

str_label += "<TD PORT=\"id\" COLSPAN=\"2\">"

str_label += str(hex(id(current)))

str_label += "</TD>"

str_label += "</TR>"

— penutup tabel

str_label += "</TABLE>"

str_label += ">"

Membuat node baru di Graphviz dengan label (tabel) tersebut
new_digraph.node('"node" + str(counter), shape="none", label = str_

Menentukan nama dua port yang bakal disambung dengan edge,
yaitu (node saat ini):next disambung ke node(berikutnya):id
yaitu bagian "next" disambung ke bagian alamat di node berikutny

nama_node_next = "node" + str(counter) + ":next"
if current.next != None:
nama_alamat_node_berikutnya = "node" + str(counter+1l) + ":id"

atau ke node(berikutnya) saja tanpa id kalau itu ternyata None,
karena None tidak akan memiliki port id
else:

nama_alamat_node_berikutnya = "node" + str(counter+1)

Menyambung keduanya
new_digraph.edge(nama_node_next, nama_alamat_node_berikutnya)

Lanjut ke node selanjutnya
current = current.next
counter += 1
Kalau sudah keluar loop, artinya current menunjuk ke None
Berarti tinggal membuat "node" terakhir berisi tulisan None
(karena sambungannya sudah dibuat di dalam loop, tinggal node nya)
new_digraph.node('"node" + str(counter), shape="none", label="None")

Digraph sudah jadi
return new_digraph

= SLList()

ins_front(5)
ins_front(15)
ins_front(25)

.ins_front(35)

.print_all()

head —=> 35 —> 25 —> 15 -> 5 —-> None

print(test.get_pos(15))

print(test.get_pos(39))

test.ins_end(100)

test.print_all()

head —=> 35 —=> 25 —> 15 —> 5 —> 100 —> None

test.del_front()
test.del_front()

test.print_all()

head —> 15 -=> 5 —> 100 —-> None

test.del_pos(3)

Error: posisi melebihi panjang linked list

test.del_pos(2)

test.print_all()

head —> 15 —> 5 —> None

test.ins_pos(-42, 7)

Error: posisi melebihi panjang linked list

test.ins_pos(76, 1)

test.print_all()

head —> 15 —> 76 —> 5 —> None

gambar = test.get_digraph()

display(gambar)

data | next

data next alamat node

76 |0x112f606a0 —»|0x 11260620
data next alamat node
15 |0x112f604f0 ——»| 0x112f604f0

head

alamat node

0x112£60700

—»| 0x112f60700

Doubly Linked List

class DLNode:

def __init__ (self, data, next=None, prev=None):
self.data = data
self.next = next
self.prev = prev

class DLList:

def __init__ (self):
self.head = None
self.tail = None

Masih sama persis dengan singly linked 1list
def is_empty(self):
if self.head == None:
return True
else:
return False

Traversal, hanya untuk menghitung banyaknya node di linked 1list
Masih sama persis dengan singly linked list
def get_size(self):

count = 0

current = self.head

while current != None:
count += 1

current = current.next
return count

Traversal, print masing-masing data node dari awal sampai akhir
def print_all(self):
print("head —-> ", end="")
temp = self.head
while (temp != None) and (temp.next != None):
print(temp.data, end = " <—> ")
temp = temp.next
Khusus node terakhir:
if (temp != None) and (temp.next == None):
print(temp.data, end = " <- ")
print("tail")

def ins_front(self, newdata):

5 | None —» None

newnode = DLNode(newdata)

newnode.next = self.head

if self.head !'= None:
self.head.prev = newnode

self.head = newnode

if self.tail == None: # jika tadinya doubly linked list kosong,
maka newnode menjadi node pertama, ditunjuk oleh head dan tail
self.tail = newnode

Berbeda dengan singly linked 1list, tinggal insert di tail;
tidak perlu traversal
def ins_end(self, newdata):
newnode = DLNode(newdata)
newnode.prev = self.tail
if self.tail != None:
self.tail.next = newnode
self.tail = newnode
if self.head == None: # jika tadinya doubly linked list kosong,
maka newnode menjadi node pertama, ditunjuk oleh head dan tail
self.head = newnode

def ins_pos(self, newdata, pos):
if pos ==
self.ins_front(newdata)
return
n = self.get_size()
if pos == n:
self.ins_end(newdata)
elif pos > n:
print("Error: posisi melebihi panjang linked list")
else:
current_pos = 0
current = self.head
while (current_pos != pos-1):
current = current.next
current_pos += 1
Keluar loop berarti current_pos == pos-1
newnode = DLNode(newdata)
newnode.prev = current
newnode.next = current.next
current.next = newnode
Sudah pasti newnode.next != None,
karena kasus pos == n sudah ditangani
newnode.next.prev = newnode

def del_front(self):
if self.is_empty():
print("Error: linked list sudah kosong")
else:
temp = self.head.next
del self.head
self.head = temp

if temp != None:
temp.prev = None
else: # jika temp == None, maka self.head == None,

berarti sekarang doubly linkd list kosong,
sehingga tail juga menunjuk ke None

self.tail = None

def del_end(self):
if self.is_empty():
print("Error: linked list sudah kosong")
else:
temp = self.tail.prev
del self.tail
self.tail = temp

if temp != None:
temp.next = None
else: # jika temp == None, maka self.tail == None,

berarti sekarang doubly linkd list kosong,
sehingga head juga menunjuk ke None
self.head = None

def del_pos(self, pos):
if pos ==
self.del_front()
return
n = self.get_size()
if pos == n-1:
self.del_end()
elif pos > n-1:
print("Error: posisi melebihi panjang linked list")
else:
current_pos = 0
current = self.head
while (current_pos != pos-1):
current = current.next
current_pos += 1
temp = current.next.next
del current.next
current.next = temp
Sudah pasti temp !'= None,
karena kasus pos == (n-1) sudah ditangani
temp.prev = current

Method untuk memperoleh digraph yang menggambarkan linked 1list nya :D
def get_digraph(self):

Buat digraph baru yang sifatnya dari kiri ke kanan

new_digraph = gv.Digraph(graph_attr={"rankdir": "LR"})

Pointer untuk menunjuk ke tiap node, mulai dari node pertama
(akan dilakukan traversal)
current = self.head

Untuk menghitung node ke-sekian untuk nama node di Graphviz,
sehingga head menunjuk ke node@, lalu node@ menunjuk ke nodel, dst
counter = 0

Memperoleh alamat yang sedang disimpan di head

- asumsi awal: tidak ada alamat (None)

next_id = None

next_name = "node@" # ini nanti untuk nama node berikutnya di Graphviz
- kalau ternyata ada alamat...

if current !'= None:

maka simpan alamat tersebut

next_id = hex(id(current))

kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
next_name = "node@:id"

Label (tabel) untuk pointer head

— pembuka tabel

str_label = "<"

str_label += "<TABLE BORDER=\"@\" CELLBORDER=\"1\" CELLSPACING=\"@\">"
- baris head

str_label += "<TR><TD>head</TD></TR>"

— baris alamat (sekalian membuat port namanya "contents")

str_label += "<TR><TD PORT=\"contents\">" + str(next_id) + "</TD></TR>
— penutup tabel

str_label += "</TABLE>"

str_label += ">"

Membuat node head, membuat edge dari head ke node berikutnya
new_digraph.node("head", shape="none", label=str_label)
new_digraph.edge('head:contents", next_name)

dari port "contents" ke node berikutnya, yang namanya next_name

Selama node yang ditunjuk bukan None, buatlah node nya di Graphviz,
lalu lanjut ke node selanjutnya (ini traversal)
while current != None:
Alamat yang tersimpan pada current.next
— asumsi awal: tidak ada alamat; current adalah node terakhir
next_id = None
- kalau ternyata ada alamat...
if current.next != None:
maka simpan alamat tersebut
next_id = hex(id(current.next))

serupa untuk prev
prev_id = None
if current.prev != None:
prev_id = hex(id(current.prev))

Persiapan label (tabel) untuk node

— pembuka tabel

str_label = "<"

str_label += "<TABLE BORDER=\"@\" CELLBORDER=\"1\" CELLSPACING=\"0
- baris tulisan "prev", "data", "next"

str_label += "<TR><TD>prev</TD><TD>data</TD><TD>next</TD></TR>"
- baris untuk isi prev, isi data, dan isi next

str_label += "<TR>"

str_label += "<TD PORT=\"prev\">" + str(prev_id) + "</TD>"
str_label += "<TD>" + str(current.data) + '</TD>"

str_label += "<TD PORT=\"next\">" + str(next_id) + "</TD>"
str_label += "</TR>"

— baris tulisan "alamat node", merentang dua kolom

str_label += "<TR><TD COLSPAN=\"3\">alamat node</TD></TR>"

— baris untuk isi alamat node, merentang dua kolom

str_label += "<TR>"

str_label += "<TD PORT=\"id\" COLSPAN=\"3\">"

str_label += str(hex(id(current)))

str_label += "</TD>"

str_label += "</TR>"

— penutup tabel
str_label += "</TABLE>"
str_label += ">"

Membuat node baru di Graphviz dengan label (tabel) tersebut
new_digraph.node('node" + str(counter), shape='"none", label = str_

Menentukan nama dua port yang bakal disambung dengan edge,

yaitu (node saat ini):next disambung ke node(berikutnya):id

yaitu bagian "next" disambung ke bagian alamat di node berikutny
nama_node_next = "node" + str(counter) + ":next"

tambahan untuk doubly linked list

nama_node_prev = '"node" + str(counter) + ":prev"
if current.next != None:
nama_alamat_node_berikutnya = "node" + str(counter+1l) + ":id"

atau ke node(berikutnya) saja tanpa id kalau itu ternyata None,
karena None tidak akan memiliki port id
else:

nama_alamat_node_berikutnya = "node" + str(counter+1)

Menyambung keduanya
new_digraph.edge(nama_node_next, nama_alamat_node_berikutnya)

tambahan untuk doubly linked list

if current.prev != None:

nama_alamat_node_sebelumnya = "node" + str(counter-1) + ":id"
else:

nama_alamat_node_sebelumnya = "node" + str(counter-1)
if current == self.head:

new_digraph.node('node-1", shape="none", label="None")
new_digraph.edge(nama_node_prev, nama_alamat_node_sebelumnya)

Lanjut ke node selanjutnya
current = current.next
counter += 1
Kalau sudah keluar loop, artinya current menunjuk ke None
Berarti tinggal membuat "node" terakhir berisi tulisan None
(karena sambungannya sudah dibuat di dalam loop, tinggal node nya)
new_digraph.node("node" + str(counter), shape="none", label="None")

Tambah pointer tail
— asumsi awal: tidak ada alamat (None)
tail_id = None
tail_name = "node" + str(counter-1) # ini nanti untuk nama node tail
- kalau ternyata ada alamat...
if self.tail !'= None:
maka simpan alamat tersebut
tail_id = hex(id(self.tail))
kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
tail_name += ":id"

Label (tabel) untuk pointer tail
— pembuka tabel
str_label = "<"

str_label += "<TABLE BORDER=\"0@\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
- baris head

str_label += "<TR><TD>tail</TD></TR>"

— baris alamat (sekalian membuat port namanya "contents")

str_label += "<TR><TD PORT=\"contents\">" + str(tail_id) + "</TD></TR>
— penutup tabel

str_label += "</TABLE>"

str_label += ">"

Membuat node tail, membuat edge dari tail ke node nya
new_digraph.node("tail", shape="none", label=str_label)
new_digraph.edge("tail:contents", tail_name)

dari port "contents" ke node yang ditunjuk tail, namanya tail_name

Digraph sudah jadi
return new_digraph

testDL = DLList()

testDL.ins_front(5)
testDL.ins_front(15)
testDL.ins_front(25)
testDL.ins_front(35)

testDL.print_all()

head —> 35 <—> 25 <-> 15 <—> 5 <- tail

gambarDL = testDL.get_digraph()

display(gambarDL)

T

(prev |data next None
None| 35 |0x112f3bbe0
head alamat node \ prev data next prev data next
0x112f3a620 > 0x112f3a620 - 0x112f3a620| 25 [0x112f3add0 0x112f3bbe0| 15 [0x112f3b670
\‘ alamat node X alamat node \ prev data| next
0x112f3bbe0 0x112f3add0 < 0x112f3add0| 5 |None—» None

alamat node
tail 0x112f3b670
0x112f3b670

Lab Komputasi Program Studi Matematika

Modul 4 Struktur Data: Stack dan notasi prefix, infix, postfix

Di praktikum kali ini tentang stack, kita akan membahas implementasi stack (baik dengan array maupun
dengan linked list) serta contoh penggunaannya. Selain itu, kita akan membahas tentang penggunaan stack
ketika berurusan dengan notasi prefix, infix, dan postfix.

import numpy as np
import graphviz as gv

Implementasi dan contoh penggunaan stack

Implementasi stack dengan array

class ArrayStack:
def __init_ (self, dtype, max):
self.dtype = dtype
self.max = max
self.array = np.empty(max, dtype=dtype)
self.top = -1

def get_size(self):
return self.top + 1

def get_capacity(self):
return self.max

def get_dtype(self):
return self.dtype

def is_empty(self):
if self.get_size() > 0:
return False
else:
return True

def is_full(self):
if self.get_size() >= self.get_capacity():
if top+l >= max
atau sama saja, if top >= max-1
return True
else:
return False

def push(self, newdata):

https://aslab-math-ui.github.io/modul-prak/

def

def

def

if self.is_full():

print("Error push: stack sudah penuh.")
else:

self.top += 1

self.array[self.top] = newdata

peek(self):

if self.is_empty():
print("Error peek: stack sedang kosong.")
return None

else:
return self.arrayl[self.top]

pop(self):
if self.is_empty():
print("Error pop: stack sudah kosong sebelumnya.")
return None
else:
output = self.arrayl[self.topl]
self.top =1
return output

print_stack(self):

i = self.top

while i >= 0:
print(self.array[i])
i—=1

print array

def

def

print_storage(self):
print(self.array)

get_digraph_stack(self):
new_digraph = gv.Digraph()
gambar akan terdiri dari satu tabel saja, satu kolom,
dan tiap baris adalah tiap elemen di stack
tabel_besar = "<"
pembuka tabel
tabel_besar += "<TABLE BORDER=\"@\" CELLBORDER=\"1\" CELLSPACING=\"0\"
menambahkan tiap elemen sebagai baris tersendiri
i = self.top
if 1 < 0:
tabel_besar += "<TR><TD>"
tabel_besar += "(Stack sedang kosong; tidak ada data sama sekali.)
tabel_besar += '"</TD></TR>"
while i >= 0:
tabel_besar += "<TR><TD>"
tabel_besar += str(self.arrayl[il)
tabel_besar += '"</TD></TR>"
i—=1
penutup tabel
tabel_besar += '"</TABLE>"
tabel_besar += ">"
new_digraph.node("ArrayStack", shape="none", label=tabel_besar)
return new_digraph

def get_digraph_storage(self):
menggambar array
new_digraph = gv.Digraph()

pembuka tabel
tabel_besar = "<"
tabel_besar += "<TABLE BORDER=\"@\" CELLBORDER=\"1\" CELLSPACING=\"0@\"
tabel hanya terdiri dari satu baris
tabel_besar += "<TR>"
satu elemen per kolom
for i in range(self.get_capacity()):
tabel_besar += "<TD>"
tabel_besar += str(self.arrayl[il])
tabel_besar += '"</TD>"
penutup baris
tabel_besar += "</TR>"
penutup tabel
tabel_besar += '"</TABLE>"
tabel_besar += ">"
new_digraph.node("array", shape="none", label=tabel_besar)
return new_digraph

arraystack = ArrayStack(int, 5)
arraystack.push(5)
arraystack.push(80)
arraystack.push(100)

arraystack.print_stack()

100
80

[

print(arraystack.get_capacity())

arraystack.print_storage()

5 80 100
4622241330054037504 4625478292286210048]

print(arraystack.peek())

100

arraystack.print_stack()

100
80

nilai = arraystack.pop()
print(nilai)

100
arraystack.print_stack()
80
5
arraystack.print_storage()
[5 80

4622241330054037504 4625478292286210048]

arraystack.push(-10)
arraystack.push(57)

arraystack.print_stack()

arraystack.print_storage()

[5 80
57 4625478292286210048]

grafl = arraystack.get_digraph_stack()

display(grafl)

57
-10
80

graf2 = arraystack.get_digraph_storage()

display(graf2)

5(80(-10]57(4625478292286210048

100

-10

arraystack.push(90)

arraystack.push(46)

Error push: stack sudah penuh.

arraystack.print_storage()

[5 80 -10 57 90]

print(arraystack.pop())
print(arraystack.pop())
print(arraystack.pop())
print(arraystack.pop())
print(arraystack.pop())

90
57
-10
80

print(arraystack.pop())

Error pop: stack sudah kosong sebelumnya.
None

print(arraystack.get_size())

arraystack.print_stack()

arraystack.print_storage()

[5 80 -10 57 90]

display(arraystack.get_digraph_stack())

(Stack sedang kosong; tidak ada data sama sekali.)

Implementasi stack dengan singly-inked list

class SLNode:
def __init__ (self, data, next=None):
self.data = data
self.next = next

class SLStack:
def __init__ (self):
"head" ganti nama jadi top
self.top = None

def is_empty(self):
if self.top == None:
return True
else:
return False

def push(self, newdata):
newnode = SLNode(newdata)
newnode.next = self.top
self.top = newnode

def peek(self):
if self.is_empty():
print("Error peek: stack sedang kosong.")
else:
return self.top.data

def pop(self):
if self.is_empty():
print("Error pop: stack sudah kosong sebelumnya.")
else:
output = self.top.data
temp = self.top
self.top = self.top.next
del temp
return output

def get_size(self):
temp = self.top
size = 0
while temp !'= None:
size +=1
temp = temp.next
return size

def print_stack(self):
temp = self.top
while temp !'= None:
print(temp.data)
temp = temp.next

print linked list
def print_storage(self):
print("top -> ", end="")
temp = self.top
while temp !'= None:
print(temp.data, end=" —> ")
temp = temp.next
print("None")

def get_digraph_stack(self):

new_digraph = gv.Digraph()
gambar akan terdiri dari satu tabel saja, satu kolom,
dan tiap baris adalah tiap elemen di stack
tabel_besar = ""
tabel_besar += "<"
tabel_besar += "<TABLE BORDER=\"@\" CELLBORDER=\"1\" CELLSPACING=\"0\"
temp = self.top
if temp == None:
tabel_besar += "<TR><TD>"
tabel_besar += "(Stack sedang kosong; tidak ada data sama sekali.)
tabel_besar += "</TD></TR>"
while temp !'= None:
tabel_besar += "<TR><TD>"
tabel_besar += str(temp.data)
tabel_besar += '"</TD></TR>"
temp = temp.next
penutup tabel
tabel_besar += '"</TABLE>"
tabel_besar += ">"
new_digraph.node("SLStack", shape="none", label=tabel_besar)
return new_digraph

copas dari modul linked list, tapi head ganti jadi top
def get_digraph_storage(self):
Buat digraph baru yang sifatnya dari kiri ke kanan
new_digraph = gv.Digraph(graph_attr={"rankdir": "LR"})

Pointer untuk menunjuk ke tiap node, mulai dari node pertama
(akan dilakukan traversal)
current = self.top

Untuk menghitung node ke-sekian untuk nama node di Graphviz,
sehingga top menunjuk ke node@, lalu node@ menunjuk ke nodel, dst
counter = 0

Memperoleh alamat yang sedang disimpan di top
— asumsi awal: tidak ada alamat (None)
next_id = None

next_name = "node@" # ini nanti untuk nama node berikutnya di Graphviz
— kalau ternyata ada alamat...
if current !'= None:

maka simpan alamat tersebut

next_id = hex(id(current))

kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
next_name = "node@:id"

Label (tabel) untuk pointer top

- pembuka tabel

str_label = "<"

str_label += "<TABLE BORDER=\"O\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
— baris top

str_label += "<TR><TD>top</TD></TR>"

- baris alamat (sekalian membuat port namanya "contents")

str_label += "<TR><TD PORT=\"contents\">" + str(next_id) + "</TD></TR>
— penutup tabel

str_label += "</TABLE>"

str_label += ">"

Membuat node top, membuat edge dari top ke node berikutnya
new_digraph.node("top", shape="none", label=str_label)
new_digraph.edge("top:contents", next_name)

dari port "contents" ke node berikutnya, yang namanya next_name

Selama node yang ditunjuk bukan None, buatlah node nya di Graphviz,
lalu lanjut ke node selanjutnya (ini traversal)
while current !'= None:
Alamat yang tersimpan pada current.next
— asumsi awal: tidak ada alamat; current adalah node terakhir
next_id = None
- kalau ternyata ada alamat...
if current.next != None:
maka simpan alamat tersebut
next_id = hex(id(current.next))

Persiapan label (tabel) untuk node

— pembuka tabel

str_label = "<"

str_label += "<TABLE BORDER=\"0@\" CELLBORDER=\"1\" CELLSPACING=\"0
- baris tulisan "data", '"next"

str_label += "<TR><TD>data</TD><TD>next</TD></TR>"

— baris untuk isi data dan isi next

str_label += "<TR>"

str_label += "<TD>" + str(current.data) + "</TD>"
str_label += "<TD PORT=\"next\">" + str(next_id) + "</TD>"
str_label += "</TR>"

— baris tulisan "alamat node", merentang dua kolom
str_label += "<TR><TD COLSPAN=\"2\">alamat node</TD></TR>"
— baris untuk isi alamat node, merentang dua kolom
str_label += "<TR>"

str_label += "<TD PORT=\"id\" COLSPAN=\"2\">"

str_label += str(hex(id(current)))

str_label += "</TD>"

str_label += "</TR>"

— penutup tabel

str_label += "</TABLE>"

str_label += ">"

Membuat node baru di Graphviz dengan label (tabel) tersebut
new_digraph.node('"node" + str(counter), shape="none", label = str_

Menentukan nama dua port yang bakal disambung dengan edge,
yaitu (node saat ini):next disambung ke node(berikutnya):id
yaitu bagian "next" disambung ke bagian alamat di node berikutny

nama_node_next = "node" + str(counter) + ":next"
if current.next != None:
nama_alamat_node_berikutnya = "node" + str(counter+1l) + ":id"

atau ke node(berikutnya) saja tanpa id kalau itu ternyata None,
karena None tidak akan memiliki port id
else:

nama_alamat_node_berikutnya = "node" + str(counter+1)

Menyambung keduanya
new_digraph.edge(nama_node_next, nama_alamat_node_berikutnya)

Lanjut ke node selanjutnya
current = current.next
counter += 1
Kalau sudah keluar loop, artinya current menunjuk ke None
Berarti tinggal membuat "node" terakhir berisi tulisan None
(karena sambungannya sudah dibuat di dalam loop, tinggal node nya)
new_digraph.node("node" + str(counter), shape="none", label="None")

Digraph sudah jadi
return new_digraph

slstack = SLStack()
slstack.print_storage()

top —> None

slstack.push("abc")
slstack.push("fg")
slstack.push("ijk")
slstack.push("pqrs")
slstack.push("xyz")

slstack.print_stack()
Xyz
pgrs
ijk
fg
abc
slstack.print_storage()

top —> xyz —> pqrs —> ijk —> fg —> abc -> None

display(slstack.get_digraph_stack())

XyZz
pqu
jk
fg
abc
print(slstack.pop())
print(slstack.pop())
print(slstack.pop())
Xyz

pars

ijk

fg
abc

slstack.print_stack()

slstack.print_storage()

top —> fg —> abc —> None

abc

display(slstack.get_digraph_stack())

Contoh sederhana: reverse suatu list/array

arrayl
array?2

def reverse_array_arraystack(array_old):

array = array_old.copy()

memeriksa tipe data dari elemen pertama
tipe_data = type(array[0])
khusus array, bisa juga menggunakan array.dtype

arraystack = ArrayStack(tipe_data, len(array))
for i in range(len(array)):
arraystack.push(array[il)
for i in range(len(array)):
array[i] = arraystack.pop()
return array

1lst1 = [llmll’ ||a||' “t”, ||e||’ ”k"]
list2 = reverse_array_arraystack(listl)
print(list2)

def reverse_array_slstack(array_old):

array = array_old.copy()

slstack = SLStack()

for i in range(len(array)):
slstack.push(array[il)

for i in range(len(array)):
array[i]l = slstack.pop()

return array

np.array([Ilmll’ Ilall’ "t", Ilell' Ilkll])
reverse_array_slstack(arrayl)

print(array2)
['k' 'e' 't' 'a' 'm']
(TODO) Notasi prefix, infix, dan postfix

Notasi prefix, infix, dan postfix adalah tiga jenis notasi (cara penulisan) untuk menuliskan operasi aritmetika
seperti penjumlahan, perkalian, dan sebagainya.

Misalnya, kita bisa menuliskan penjumlahan 3 + 5, di manadua angka, 3 dan 5, dioperasikan oleh suatu
“operator” yaitu + (plus). Perhatikan bahwa operator berada di tengah, di antara kedua angka. Penulisan
seperti ini disebut notasi infix, dan inilah penulisan yang biasa kita kenal.

Ada juga cara penulisan di mana operator ditempatkan sebelum kedua angka, disebut notasi prefix, seperti
berikut: + 3 5

Walaupun terlihat agak aneh, kita bisa saja mendefinisikan fungsi seperti pseuducode berikut:

function add(x, y)
return x+y
endfunction

Kemudian penggunaannya adalah add (3, 5),secara tidak langsung menggunakan notasi prefix :)

Selain prefix untuk di awal dan infix untuk di tengah, kita juga bisa menempatkan operator setelah kedua
angka, disebut notasi postfix. Contohnya: 3 5 +

Notasi postfix sebenarnya tidak terlalu asing, karena misalnya untuk menuliskan faktorial itu biasanya
menggunakan tanda seru setelah angkanya, lagi-lagi secara tidak langsung menggunakan notasi postfix,
seperti: 4!

Salah satu keuntungan menggunakan notasi prefix maupun postfix adalah bisa menghilangkan kurung tanpa
menyebabkan ambigu. Contohnya, dalam notasi infix kita bisa menuliskan 5 x (6 + 7) agar penjumlahan
dilakukan terlebih dahulu. Sedangkan, notasi prefix maupun postfix dijamin tidak membutuhkan kurung:

e Prefix:*x 5 + 6 7
e Postfix:6 7 + 5 x

Stack bisa sangat membantu untuk mengubah antara notasi prefix, infix, dan postfix.

Tokenisasi

Sebelum membahas konversi antara notasi prefix, infix, dan postfix, kita perlu membahas sebentar mengenai
“tokenisasi” (tokenization), yaitu proses “memecah” suatu string yang utuh menjadi “bagian-bagiannya”.

Misalnya, kalau kita punya notasi infix dalam string "3 + 5", kita bisa melakukan tokenization untuk
memecahnya menjadi ["3", "+", "5"].

Cara mudah untuk melakukan tokenisasi, bisa dengan sekedar menganggap tiap “bagian” atau tiap “token”
terpisahkan oleh spasi, sehingga bisa di-split begitu saja:

def tokenize(string_utuh):
hasil = string_utuh.split(" ") # string berisi satu spasi
return hasil

print(tokenize("3 + 5"))
[|3I' |+|’ |5|]

Agar cara mudah ini berhasil (terutama untuk notasi infix), bahkan antara kurung buka/tutup juga harus
diberi spasi, ya!

print(tokenize("5 x (6 + 7)"))

Precedence dan associativity

Sebelumnya, telah disebutkan bahwa salah satu keuntungan notasi prefix maupun postfix dibandingkan
notasi infix adalah penulisan yang tidak ambigu tanpa diperlukannya kurung. Agar bisa mengubah notasi
infix menjadi notasi prefix ataupun notasi postfix, tentunya kita harus bisa membaca notasi infix secara tidak
ambigu. Artinya, kita harus kenal dengan aturan urutan pengoperasian.

Urusan urutan pengoperasian terbagi menjadi dua:

e Precedence, semacam tingkatan prioritas antara operasi yang berbeda, yang mana yang dilakukan
duluan (apalagi kalau tidak ada tanda kurung)

e Associativity, urutan pengoperasian antara dua operasi yang precedence nya sama, apakah dari kiri ke
kanan atau kanan ke kiri

Misalkan ada penulisan notasiinfix: 9 + 8 x 7

Tentunya perkalian dilakukan terlebih dahulu, barulah penjumlahan. Artinya, perkalian memiliki higher
precedence (atau precedence yang lebih tinggi) daripada penjumlahan; bisa juga dikatakan, penjumlahan
memiliki lower precedence (atau precedence yang lebih rendah) daripada perkalian.

Sedangkan, misal ada penulisan notasiinfix: 8 / 4 x 2dan 8 x 4 / 2
Keduanya dilakukan dari kiri ke kanan. Artinya:

e Tidak ada prioritas yang lebih utama antara pembagian maupun perkalian, sehingga keduanya
memiliki equal precedence (atau precedence yang sama).
e Associativity dari pembagian maupun perkalian bersifat left-to-right.

Precedence dan associativity dari beberapa operator bisa didata:

Precedence Operator Associativity
3 ~ right-to-left
2 * / left-to-right
1 + - left-to-right

Perhatikan:

e Perpangkatan bersifat right-to-left karena a® = a*.

e Pembagian maupun pengurangan bersifat left-to-right karena

a/b/c = (a/b)/cdan

a—b—c=(a—0b)—c

e Kebetulan, perkalian maupun penjumlahan memiliki sifat asosiatif, yaitu
(axb)xc=ax*(bxc)
(a+b)+c=a+ (b+c)

sehingga perkalian maupun penjumlahan sebenarnya bersifat left-to-right maupun right-to-left
sekaligus, yaitu

axbxc=(a*xb)xc=ax(bxc)
a+b+c=(a+b)+c=a+(b+c)

Namun, untuk mempermudah klasifikasi, kita bisa mengkategorikan perkalian dan penjumlahan
bersifat left-to-right.

(TODO) Urusan notasi prefix, infix, dan postfix dengan stack

Notasi infix menjadi postfix

Setelah tokenisasi, berikut langkah mengubah notasi infix menjadi postfix.

Siapkan suatu stack kosong, serta tempat (misal string kosong) untuk menyimpan hasil infix. Lalu, scanning
(melihat satu-per-satu) tiap token dari kiri ke kanan, dan ikuti ketentuan berikut:

1. Apabila token adalah operand/angka, langsung tambahkan ke hasil infix

2. Apabila stack kosong, atau apabila elemen teratas pada stack adalah kurung kiri, maka push token
tersebut ke dalam stack

3. Apabila token adalah kurung kiri yaitu “(”, push ke dalam stack

4. Apabila token adalah kurung kanan yaitu “)”, lakukan while loop: lakukan pop pada stack, masukkan
hasil pop tersebut ke hasil infix, hentikan while loop apabila hasil pop tersebut adalah kurung kiri.

5. Apabila token memiliki precedence yang lebih tinggi daripada elemen teratas pada stack, maka push
token tersebut ke dalam stack.

6. Apabila token memiliki precedence yang lebih rendah daripada elemen teratas pada stack, lakukan
langkah berikut: lakukan pop pada stack, lalu masukkan hasil pop tersebut ke hasil infix.

7. Apabila token memiliki precedence yang setara dengan elemen teratas pada stack, perhatikan
associativity dari operator tersebut, lalu:

a. Apabila untuk operator tersebut bersifat left-to-right: lakukan pop pada stack, masukkan hasil
pop ke hasil infix, lalu push token

b. Sedangkan apabila bersifat right-to-left: push token tersebut ke dalam stack

Setelah suatu token teratasi, tentunya langsung lanjut melihat token berikutnya. Apabila semua token
sudah teratasi sedangkan stack belum kosong, maka ulangi sampai stack kosong: lakukan pop, masukkan
hasil pop ke hasil infix.

Notasi infix menjadi prefix
Evaluasi notasi prefix
Evaluasi notasi postfix
Notasi postfix menjadi infix

Notasi prefix menjadi infix

Lab Komputasi Program Studi Matematika

Modul 5 Struktur Data: Queue dan berbagai
implementasinya

Di praktikum kali ini, kita akan membahas tentang struktur data queue serta berbagai “implementasi’nya
dalam Python (yaitu berbagai cara membuat struktur data queue di Python), baik menggunakan array
maupun linked list.

Queue itu sendiri adalah suatu struktur data dengan dua ujung, di mana data bisa dimasukkan dari salah
satu ujung tertentu (yang disebut rear) dan data bisa dikeluarkan dari ujung yang satunya lagi (yang disebut
front). Queue dikatakan menganut prinsip FIFO (First In First Out), karena data yang pertama masuk akan
menjadi data yang pertama keluar.

Kita akan menggunakan array dari numpy, sehingga perlu melakukan import:

import numpy as np
Implementasi (linear) queue dengan array

class ArrayLinQueue:
def __init__ (self, dtype, array_max):
self.dtype = dtype
self.array_max = array_max
self.array = np.empty(array_max, dtype=dtype)
self.front = -1
self.rear = -1

def get_size(self):
size = (self.rear - self.front) + 1
return size

def get_capacity_array(self):
return self.array_max

def get_capacity_queue(self):
if self.front == -1:
capacity_queue = self.array_max
else:
capacity_queue = self.array_max - self.front
return capacity_queue

def is_empty(self):
if self.front == -1:
return True
else:

https://aslab-math-ui.github.io/modul-prak/

return False

def is_full(self):
if self.rear == self.array_max - 1:
return True
else:
return False

def enqueue(self, newdata):
if self.is_full():
print("Error enqueue: queue sudah penuh sebelumnya")
elif self.front == -1:
self.front += 1
self.rear += 1

self.array[self.rear] = newdata
else:

self.rear += 1

self.array[self.rear] = newdata

def peek(self):
if self.is_empty():
print("Error peek: queue sedang kosong")
else:
return self.array[self.front]

def dequeue(self):

if self.is_empty():
print("Error dequeue: queue sudah kosong sebelumnya")
return None

elif (self.get_size() == 1):
Jika di queue hanya ada satu elemen, dan ingin di-dequeue,
maka queue akan kosong setelah itu
output = self.arrayl[self.front]
self.front = -1
self.rear = -1
return output

else:
output = self.arrayl[self.front]
self.front += 1
return output

def print_storage(self):
print(self.array)

def print_queue(self):
print("front : ", end="")
if self.is_empty():
print("(tidak ada data) : rear")

else:
for i in range(self.front, self.rear): # i = front, ..., rear-1
print(self.array[i], end=" | ")
print(self.array[self.rear], end="") # untuk i = rear
print(" : rear")

arraylinqueue = ArrayLinQueue(int, 5)

arraylinqueue.print_queue()

front : (tidak ada data) : rear

arraylinqueue.print_storage()

[0 4602678819172646912 4607182418800017408

4609434218613702656 4611686018427387904]

arraylinqueue.enqueue(-18)
arraylinqueue.enqueue(67)
arraylinqueue.enqueue(32)

arraylinqueue.print_queue()

front : =18 | 67 | 32 : rear

arraylinqueue.print_storage()

[-18 67
4609434218613702656 4611686018427387904]

print(arraylinqueue.front)
print(arraylinqueue.rear)

arraylinqueue.enqueue(-29)

arraylinqueue.print_queue()

front : =18 | 67 | 32 | =29 : rear

arraylinqueue.print_storage()

[-18 67
-29 4611686018427387904]

print(arraylinqueue.front)
print(arraylinqueue.rear)

print(arraylinqueue.peek())

-18

arraylinqueue.print_queue()

32

32

front :

front :

67

front :

32

front :

-18 | 67 | 32 | =29 : rear

nilai = arraylinqueue.dequeue()
print(nilai)

arraylinqueue.print_queue()

67 | 32 | =29 : rear

arraylinqueue.print_storage()

-18 67
-29 4611686018427387904]

print(arraylinqueue.front)
print(arraylinqueue.rear)

print(arraylinqueue.dequeue())

arraylinqueue.print_queue()

32 | =29 : rear

print(arraylinqueue.dequeue())
print(arraylinqueue.dequeue())

arraylinqueue.print_queue()

(tidak ada data) : rear

print(arraylinqueue.front)
print(arraylinqueue.rear)

print(arraylinqueue.dequeue())

Error dequeue: queue sudah kosong sebelumnya

None

32

arraylinqueue.enqueue(-25)
arraylinqueue.enqueue(13)
arraylinqueue.enqueue(48)
arraylinqueue.enqueue(-87)
arraylinqueue.enqueue(38)

arraylinqueue.print_queue()

front : =25 | 13 | 48 | -87 | 38 : rear

arraylinqueue.print_storage()

[-25 13 48 -87 38]

print(arraylinqueue.is_full())

True
print(arraylinqueue.front)
print(arraylinqueue.rear)
0
4

arraylinqueue.enqueue(-53)

Error enqueue: queue sudah penuh sebelumnya

print(arraylinqueue.dequeue())
print(arraylinqueue.dequeue())

13

arraylinqueue.print_queue()

front : 48 | -87 | 38 : rear

arraylinqueue.print_storage()

[-25 13 48 -87 38]

print(arraylinqueue.front)
print(arraylinqueue.rear)

arraylinqueue.enqueue(-53)

Error enqueue: queue sudah penuh sebelumnya

Implementasi circular queue dengan array

class ArrayCircQueue:
def __init_ (self, dtype, max):
self.dtype = dtype
self.max = max
self.array = np.empty(max, dtype=dtype)
self.front = -1
self.rear = -1

def is_empty(self):
if self.front == -1:
return True
else:
return False

def is_full(self):
if self.front == (self.rear + 1) % self.max:
return True
else:
return False

def get_size(self):
if self.is_empty():
size = 0
elif self.front <= self.rear:
size = (self.rear - self.front) + 1
else:
size = self.max - (self.front - self.rear - 1)
return size

def get_capacity(self):
return self.max

def enqueue(self, newdata):

if self.is_full():
print("Error enqueue: queue sudah penuh sebelumnya")

elif self.front == -1:
self.front += 1
self.rear += 1
self.array[self.rear] = newdata

else:
self.rear = (self.rear + 1) % self.max # hanya berbeda di sini
self.array[self.rear] = newdata

Masih sama persis
def peek(self):
if self.is_empty():
print("Error peek: queue sedang kosong")
else:
return self.arrayl[self.front]

def dequeue(self):
if self.is_empty():
print("Error dequeue: queue sudah kosong sebelumnya")
return None

elif (self.get_size() == 1):
Jika di queue hanya ada satu elemen, dan ingin di-dequeue,
maka queue akan kosong setelah itu
output = self.arrayl[self.front]
self.front = -1
self.rear = -1
return output
else:
output = self.arrayl[self.front]
self.front = (self.front + 1) % self.max # hanya berbeda di sini
return output

def print_storage(self):
print(self.array)

def print_queue(self):
print("front : ", end="")
if self.is_empty():
print("(tidak ada data) : rear")

else:
i = front, ..., rear-1 (kurang lebih begitu)
i = self.front
while i != self.rear:

print(self.array[i]l, end=" | ")
i=(i+1) % self.max
untuk i = rear
print(self.array[self.rear], end="")
print(" : rear")

arraycircqueue = ArrayCircQueue(int, 5)
arraycircqueue.print_queue()

front : (tidak ada data) : rear

arraycircqueue.print_storage()

[4607182418800017408 4613374868287651840 4618441417868443648
4622241330054037504 4625478292286210048]

arraycircqueue.enqueue(65)
arraycircqueue.enqueue(-11)
arraycircqueue.enqueue(43)

arraycircqueue.print_queue()

front : 65 | -11 | 43 : rear

arraycircqueue.print_storage()

[65 -11 43
4622241330054037504 4625478292286210048]

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(97)
arraycircqueue.enqueue(-12)

arraycircqueue.print_queue()

front : 65 | =11 | 43 | 97 | =12 : rear

arraycircqueue.enqueue(41)

Error enqueue: queue sudah penuh sebelumnya

arraycircqueue.print_storage()

[65 -11 43 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.peek())

65

arraycircqueue.print_queue()

front : 65 | =11 | 43 | 97 | -12 : rear

print(arraycircqueue.dequeue())

65

arraycircqueue.print_queue()

front : =11 | 43 | 97 | =12 : rear

arraycircqueue.print_storage()

[65 -11 43 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.dequeue())
print(arraycircqueue.dequeue())

-11
43

arraycircqueue.print_queue()

front : 97 | =12 : rear

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.print_storage()

[65 -11 43 97 -12]

arraycircqueue.enqueue(-74)

arraycircqueue.print_queue()

front : 97 | =12 | -74 : rear

arraycircqueue.print_storage()

[-74 -11 43 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(19)

arraycircqueue.print_queue()

front : 97 | =12 | =74 | 19 : rear

arraycircqueue.print_storage()

[-74 19 43 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(85)

arraycircqueue.print_queue()

front : 97 | =12 | =74 | 19 | 85 : rear

arraycircqueue.print_storage()

[-74 19 85 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(-31)

Error enqueue: queue sudah penuh sebelumnya

print(arraycircqueue.dequeue())

97

arraycircqueue.print_queue()

front : =12 | =74 | 19 | 85 : rear

arraycircqueue.print_storage()

[-74 19 85 097 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.dequeue())

-12

arraycircqueue.print_queue()

front : =74 | 19 | 85 : rear
arraycircqueue.print_storage()
[-74 19 85 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(27)

arraycircqueue.print_queue()
front : =74 | 19 | 85 | 27 : rear

arraycircqueue.print_storage()
[-74 19 85 27 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.dequeue())

arraycircqueue.print_queue()
front : 19 | 85 | 27 : rear

arraycircqueue.print_storage()
[-74 19 85 27 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

Implementasi (linear) queue dengan linked list

class SLNode:
def __init__ (self, data, next=None):

self.data data
self.next = next

class SLLinQueue:
def __init__ (self):
head=front, tail=rear
self.front = None
self.rear = None

def is_empty(self):
if self.front == None:
return True
else:
return False

def get_size(self):

size = 0

temp = self.front

while (temp != None):
size += 1

temp = temp.next
return size

insert di akhir linked list
def enqueue(self, newdata):
newnode = SLNode(newdata)
if self.is_empty():
self.front = newnode
self.rear = newnode
else:
self.rear.next = newnode
self.rear = newnode

def peek(self):
if self.is_empty():
print("Error peek: queue sedang kosong")
return None
else:
return self.front.data

hapus di awal linked list
def dequeue(self):
if self.is_empty():
print("Error dequeue: queue sudah kosong sebelumnya")
return None
else:
output = self.front.data
temp = self.front
self.front = self.front.next
del temp
return output

def print_queue(self):
print("front : ", end="")
if self.is_empty():
print("(tidak ada data) : rear")

front :

front

front :

front

front :

front

front :

front

else:
temp = self.front

while temp '= None:
if temp.next !'= None:
print(temp.data, end = " | ")
else:

print(temp.data, end="")

temp = temp.next
print(" : rear")

def print_storage(self):
print("front —> ", end="")

if self.is_empty():
print("None <- rear")

else:
temp = self.front
while temp !'= None:
if temp.next !'= None:
print(temp.data, end =
else:

print(temp.data, end =
temp = temp.next
print("rear")

sllinqueue = SLLinQueue()
sllinqueue.print_queue()
sllinqueue.print_storage()

(tidak ada data) : rear
—-> None <- rear

sllinqueue.enqueue(10)
sllinqueue.print_queue()
sllinqueue.print_storage()

10 : rear
—> 10 <- rear

sllinqueue.enqueue(98)
sllinqueue.print_queue()
sllinqueue.print_storage()

10 | 98 : rear
-> 10 —> 98 <- rear

sllinqueue.enqueue(-43)
sllinqueue.print_queue()
sllinqueue.print_storage()

10 | 98 | -43 : rear
—-> 10 —> 98 —> -43 <- rear

print(sllinqueue.peek())

10

sllinqueue.print_queue()
sllinqueue.print_storage()

front : 10 | 98 | -43 : rear
front —> 10 —> 98 —> -43 <- rear

print(sllinqueue.dequeue())
10

sllinqueue.print_queue()
sllinqueue.print_storage()

front : 98 | -43 : rear
front —> 98 —> -43 <- rear

Implementasi circular queue dengan (circular) linked list

class SLCircQueue:
def __init__ (self):
head=front, tail=rear
self.front = None
self.rear = None

def is_empty(self):
if self.front == None:
return True
else:
return False

def get_size(self):
size = 0
temp = self.front
if temp == None:
return size
else:
size +=1
temp = temp.next
while (temp != self.front):
size += 1
temp = temp.next
return size

def enqueue(self, newdata):

newnode = SLNode(newdata)

if self.is_empty():
self.front = newnode
self.rear = newnode
newnode.next = newnode

else:
self.rear.next = newnode
self.rear = newnode

newnode.next = self.front

masih sama persis
def peek(self):
if self.is_empty():
print("Error peek: queue sedang kosong")
return None
else:
return self.front.data

def dequeue(self):

if self.is_empty():
print("Error dequeue: queue sudah kosong sebelumnya")
return None

elif (self.front == self.rear): # sama saja self.get_size() ==
output = self.front.data
del self.front
self.front = None
self.rear = None
return output

else:
output = self.front.data
temp = self.front
self.front = self.front.next
del temp
self.rear.next = self.front
return output

def print_queue(self):
print("front : ", end="")
if self.is_empty():
print("(tidak ada data) : rear")
else:
temp = self.front
while temp.next != self.front:
print(temp.data, end = " | ")
temp = temp.next
print(temp.data, end="")
print(" : rear")

def print_storage(self):
print("front —> ", end="")
if self.is_empty():
print("None (<- rear)")
else:
temp = self.front
while temp.next != self.front:
print(temp.data, end = " —> ")
temp = temp.next
print(temp.data, end = "")
print(" (<- rear) —> front")

slcircqueue = SLCircQueue()
slcircqueue.print_queue()
slcircqueue.print_storage()

front : (tidak ada data) : rear
front —> None (<- rear)

slcircqueue.enqueue(-91)
slcircqueue.print_queue()
slcircqueue.print_storage()

front : -91 : rear
front —> -91 (<- rear) -> front

slcircqueue.enqueue(14)
slcircqueue.print_queue()
slcircqueue.print_storage()

front : =91 | 14 : rear
front -> -91 -> 14 (<- rear) —> front

slcircqueue.enqueue(30)
slcircqueue.print_queue()
slcircqueue.print_storage()

front : =91 | 14 | 30 : rear
front —> -91 —-> 14 —> 30 (<- rear) -> front

slcircqueue.peek()

slcircqueue.print_queue()
slcircqueue.print_storage()

front : =91 | 14 | 30 : rear
front —=> -91 -> 14 -> 30 (<- rear) -> front

print(slcircqueue.dequeue())

slcircqueue.print_queue()
slcircqueue.print_storage()

front : 14 | 30 : rear
front —> 14 -> 30 (<- rear) —> front

(TODO) Pengayaan: Deque atau double-ended queue (DEQ)

Modul 6 Struktur Data: Binary Tree, Binary Search Tree (BST)

import numpy as np
import graphviz as gv

Implementasi binary tree

Binary Tree dengan array

class ArrayBintree:
def __init__ (self, dtype, height, emptydata=-9999):
self.dtype = dtype
self.height = height
self.emptydata = emptydata
self.array_size = 2xx(height+1) - 1
self.array = np.empty(self.array_size, dtype=dtype)
for i in range(self.array_size):
self.array[i] = emptydata

def get_root(self):
root_data = self.arrayl[0]
if root_data == self.emptydata:
return None
else:
return root_data

def set_root(self, newdata):
self.array[0] = newdata

def get_data(self, node_idx):
if node_idx < self.array_size:
return self.array[node_idx]
else:
print("Error get_data: indeks di luar ukuran tree")
return None

def set_data(self, node_idx, newdata):
if node_idx < self.array_size:
self.array[node_idx] = newdata
else:
print("Error set_data: indeks di luar ukuran tree")

def get_left_child_idx(self, node_idx):
left_idx = 2*node_idx + 1
if left_idx < self.array_size:

https://aslab-math-ui.github.io/modul-prak/

return left_idx
else:
return -1

def get_left_child(self, node_idx):
left_idx = self.get_left_child_idx(node_idx)
if left_idx !'= -1:
data = self.array[left_idx]
if data != self.emptydata:
return data
else:
return None
else:
return None

def get_right_child_idx(self, node_idx):
right_idx = 2*node_idx + 2
if right_idx < self.array_size:
return right_idx
else:
return -1

def get_right_child(self, node_idx):
right_idx = self.get_right_child_idx(node_idx)
if right_idx != -1:
data = self.arrayl[right_idx]
if data != self.emptydata:
return data
else:
return None
else:
return None

def get_parent_idx(self, node_idx):
if node_idx ==

return -1
idx = int(np.floor((node_idx - 1)/2))
return idx

preorder: tengah, kiri, kanan
def get_preorder(self, current=0, result=None):
is_starting_node = False

if result == None:
is_starting_node = True
result = []
tengah
current_data = self.arrayl[current]
if current_data != self.emptydata:

result.append(current_data)

kiri
left_idx = self.get_left_child_idx(current)
if left_idx !'= -1:

self.get_preorder(current=1left_idx, result=result)

kanan

right_idx = self.get_right_child_idx(current)
if right_idx != -1:
self.get_preorder(current=right_idx, result=result)

if is_starting_node:
return result

inorder: kiri, tengah, kanan
def get_inorder(self, current=0, result=None):
is_starting_node = False

if result == None:
is_starting_node = True
result = [1]
kiri
left_idx = self.get_left_child_idx(current)
if left_idx !'= -1:

self.get_inorder(current=1left_idx, result=result)

tengah
current_data = self.arraylcurrent]
if current_data != self.emptydata:

result.append(current_data)

kanan
right_idx = self.get_right_child_idx(current)
if right_idx != -1:

self.get_inorder(current=right_idx, result=result)

if is_starting_node:
return result

postorder: kiri, kanan, tengah
def get_postorder(self, current=0, result=None):
is_starting_node = False

if result == None:
is_starting_node = True
result = []
kiri
left_idx = self.get_left_child_idx(current)
if left_idx !'= -1:

self.get_postorder(current=1left_idx, result=result)

kanan
right_idx = self.get_right_child_idx(current)
if right_idx !'= -1:

self.get_postorder(current=right_idx, result=result)

tengah
current_data = self.arrayl[current]
if current_data != self.emptydata:

result.append(current_data)

if is_starting_node:
return result

def get_digraph_simple(self):
digraph = gv.Digraph()
for idx in range(self.array_size):
data = self.arrayl[idx]
if data !'= self.emptydata:
digraph.node("node" + str(idx), label=str(data))
left_idx = self.get_left_child_idx(idx)
right_idx = self.get_right_child_idx(idx)
if left_idx !'= -1:
digraph.edge("node" + str(idx), "node" + str(left_idx))
if self.array[left_idx] == self.emptydata:
digraph.node("node" + str(left_idx), label="NULL", sha
if right_idx !'= -1:
digraph.edge('node" + str(idx), "node" + str(right_idx))
if self.array[right_idx] == self.emptydata:
digraph.node("node" + str(right_idx), label="NULL", sh
return digraph

arraybintree = ArrayBintree(int, 2)

print(arraybintree.array)
[-9999 -9999 -9999 -9999 -9999 -9999 -9999]

arraybintree.set_root(10)

print(arraybintree.array)
[10 -9999 -9999 -9999 -9999 -9999 -9999]

display(arraybintree.get_digraph_simple())

NULL NULL

arraybintree.set_data(
arraybintree.get_left_child_idx(0),
5

print(arraybintree.array)

[1o 5 -9999 -9999 -9999 -9999 -9999]

display(arraybintree.get_digraph_simple())

NULL NULL

arraybintree.set_data(
arraybintree.get_right_child_idx(0),
19

print(arraybintree.array)
10 5 19 -9999 -9999 -9999 -9999]

display(arraybintree.get_digraph_simple())

NULL NULL NULL NULL

arraybintree.set_data(
arraybintree.get_right_child_idx(arraybintree.get_left_child_idx(@)),
37

print(arraybintree.array)

10 5 19 -9999 37 -9999 -9999]

display(arraybintree.get_digraph_simple())

NULL o NULL NULL

arraybintree.get_data(
arraybintree.get_right_child_idx(arraybintree.get_left_child_idx(0))

37
arraybintree.array[5] = 98
arraybintree.array[6] = 62
print(arraybintree.array)

[10 5 19 -9999 37 98 621

display(arraybintree.get_digraph_simple())

S OIOIC

arraybintree.array[3] = 25

print(arraybintree.array)
[16 5 19 25 37 98 62]

display(arraybintree.get_digraph_simple())

arraybintree.get_preorder()

[1e, 5, 25, 37, 19, 98, 62]

arraybintree.get_inorder()

[25, 5, 37, 10, 98, 19, 62]

arraybintree.get_postorder()

[25, 37, 5, 98, 62, 19, 10]

Binary Tree dengan pointer (linked binary tree)

class BintreeNode:
def __init_ (self, data, left=None, right=None):
self.data = data
self.left left
self.right = right

class LinkedBintree:
def __init__ (self):
self.root = None

def is_empty(self):
if self.root == None:
return True
else:
return False

def get_root_data(self):
if self.is_empty():
print("Error get_root_data: tree sedang kosong")
return None
else:
return self.root.data

def set_root_data(self, newdata):
if self.is_empty():
self.root = BintreeNode(newdata)
else:
self.root.data = newdata

preorder: tengah, kiri, kanan

def get_preorder(self, current=None, result=None, get_addresses=False):
is_starting_node = False

if result == None:
is_starting_node = True
result = [1]

current = self.root

if current != None:
tengah
if (not get_addresses):
result.append(current.data)
else:

result.append(current)

kiri
if current.left != None:
self.get_preorder(current.left, result=result)

kanan
if current.right != None:
self.get_preorder(current.right, result=result)

if is_starting_node:
return result

inorder: kiri, tengah, kanan

def get_inorder(self, current=None, result=None, get_addresses=False):
is_starting_node = False

if result == None:
is_starting_node = True
result = []

current = self.root

if current != None:
kiri
if current.left != None:

self.get_inorder(current.left, result=result)

tengah

if (not get_addresses):
result.append(current.data)

else:

result.append(current)

kanan
if current.right !'= None:
self.get_inorder(current.right, result=result)

if is_starting_node:

return result

postorder: kiri, kanan, tengah

def get_postorder(self, current=None, result=None, get_addresses=False):
is_starting_node = False

if result == None:
is_starting_node = True
result = []

current = self.root

if current != None:
kiri
if current.left != None:

self.get_postorder(current.left, result=result)

kanan
if current.right != None:
self.get_postorder(current.right, result=result)

tengah
if (not get_addresses):
result.append(current.data)
else:
result.append(current)

if is_starting_node:
return result

berdasarkan algoritma preorder traversal :D
def get_digraph_simple(self, current=None, node_name=None, result=None):
is_starting_node = False
if result == None:
is_starting_node = True
result = gv.Digraph()
current = self.root

node_name = "root"
if current != None:
tengah

result.node(node_name, label=str(current.data))

kiri
left_name = node_name + "—>left"
result.edge(node_name, left_name)
self.get_digraph_simple(
current=current.left, node_name=left_name, result=result

kanan
right_name = node_name + "—->right"
self.get_digraph_simple(
current=current.right, node_name=right_name, result=result
)
result.edge(node_name, right_name)
else:
result.node(node_name, label="NULL", shape="none")

if is_starting_node:
return result

linkedbintree = LinkedBintree()

print(linkedbintree.root)
None

linkedbintree.root = BintreeNode(26)

print(linkedbintree. root)
<_main__.BintreeNode object at 0x10ccbd060>
print(linkedbintree.root.data)
26

linkedbintree.root.left = BintreeNode(89)
linkedbintree.root.right = BintreeNode(54)

display(linkedbintree.get_digraph_simple())

NULL NULL NULL NULL

linkedbintree.root.left.right = BintreeNode(43)

display(linkedbintree.get_digraph_simple())

NULL ° NULL NULL

NULL NULL

print(linkedbintree.root.left.right.data)

43

linkedbintree.root.right.right = BintreeNode(11)
linkedbintree.root.right.right.left = BintreeNode(72)
linkedbintree.root.right.right.right = BintreeNode(35)

display(linkedbintree.get_digraph_simple())

NULL NULL

NULL NULL NULL NULL

linkedbintree.root.left.right.left = BintreeNode(90)
linkedbintree.root.left.right.left.right = BintreeNode(16)

display(linkedbintree.get_digraph_simple())

NULL NULL

NULL NULL

NULL NULL

linkedbintree.get_preorder()

[26, 89, 43, 90, 16, 54, 11, 72, 35]

linkedbintree.get_inorder()

[89, 90, 16, 43, 26, 54, 72, 11, 35]

linkedbintree.get_postorder()

[16, 90, 43, 89, 72, 35, 11, 54, 26]

Binary Search Tree (BST) dengan pointer (linked BST)

Binary Search Tree (BST) adalah binary tree dengan beberapa sifat dan fitur tambahan. Sehingga, untuk
implementasi BST, kita cukup menambahkan beberapa method ke class binary tree yang sudah dibuat.

Daripada mengetik ulang semua method yang sudah dibuat di class binary tree, kita bisa menerapkan
salah satu prinsip OOP yaitu inheritance, agar langsung mewariskan semua fitur yang sudah dibuat di
implementasi binary tree.

Karena lebih fleksibel (tidak ada keterbatasan ukuran), kita akan membuat BST dengan pointer (juga
disebut linked BST) saja, berarti meng-inherit dari class LinkedBintree.

(Membuat BST dengan array juga memungkinkan, meng-inherit dari class ArrayBintree,tetapi akanada
beberapa pertimbangan tambahan, misalnya untuk memastikan posisi node yang di-insert tidak melebihi
kapastias array.)

class LinkedBST(LinkedBintree):
def __init_ (self):
menggunakan __init__ dari parent class,
melalui super() yaitu parent class
super().__init_ ()

semua method dari LinkedBintree otomatis sudah terdefinisi
cari elemen di BST

def search(self, x):
temp = self.root

while (temp != None):
if x == temp.data:
return x

elif x < temp.data:
temp = temp. left
else:
temp = temp.right
return None

insertion
def insert(self, newdata):

if self.root == None:
self.root = BintreeNode(newdata)
return
temp = self.root
while (temp != None):
if newdata == temp.data:
print("Error insert: data sudah ada di BST, yaitu", newdata)
return

elif newdata < temp.data:
if temp.left == None:
temp.left = BintreeNode(newdata)
return
else:
temp = temp. left
else: # newdata > temp.data
if temp.right == None:
temp.right = BintreeNode(newdata)
return
else:
temp = temp.right

deletion
def delete(self, x, inorder_pred=False):

if self.is_empty():
print("Error: BST kosong")

return
prev = self.root
turn = ""
if x < prev.data:
if prev.left == None:
print("Error delete: tidak ditemukan data yang bernilai", x)
return
else:
temp = prev. left
turn = "left"
elif x > prev.data:
if prev.right == None:
print("Error delete: tidak ditemukan data yang bernilai", x)
return
else:
temp = prev.right

turn = "right"
else:
temp = prev

while (temp != None):
if temp.data == x:
break
elif x < temp.data:
if temp.left == None:
print("Error delete: tidak ditemukan data yang bernilai",

return
else:
prev = temp
temp = temp. left

turn = "left"
else: # x > temp.data
if temp.right == None:
print("Error delete: tidak ditemukan data yang bernilai",

return
else:
prev = temp
temp = temp.right
turn = "right"

kasus @ children
if (temp.left == None) and (temp.right == None):

if turn == "left":
prev.left = None

elif turn == "right":
prev.right = None

del temp

return

kasus 1 child, di kiri
elif (temp.left != None) and (temp.right == None):

if turn == "left":
prev.left = temp.left
elif turn == "right":

prev.right = temp.left

del temp
return

kasus 1 child, di kanan
elif (temp.left == None) and (temp.right != None):

if turn == "left":
prev.left = temp.right

elif turn == "right":
prev.right = temp.right

del temp

return

kasus 2 children

elif inorder_pred: # metode inorder predecessor (left subtree)
inorder_left = []
self.get_inorder(current=temp.left, result=inorder_left)
replacement = inorder_left[-1] # elemen terakhir
self.delete(replacement, inorder_pred=inorder_pred)
temp.data = replacement
return

else: # metode inorder successor (right subtree)
inorder_right = []
self.get_inorder(current=temp.right, result=inorder_right)
replacement = inorder_right[0]
self.delete(replacement, inorder_pred=inorder_pred)
temp.data = replacement
return

linkedbst = LinkedBST()
linkedbst.insert(10)

display(linkedbst.get_digraph_simple())

NULL NULL

linkedbst.insert(27)

display(linkedbst.get_digraph_simple())

NULL o

NULL NULL

linkedbst.insert(5)

display(linkedbst.get_digraph_simple())

NULL NULL NULL NULL

linkedbst.insert(8)

display(linkedbst.get_digraph_simple())

NULL ° NULL NULL

NULL NULL

linkedbst.insert(8)
Error insert: data sudah ada di BST, yaitu 8

display(linkedbst.get_digraph_simple())

NULL ° NULL NULL

NULL NULL

linkedbst.insert(16)

display(linkedbst.get_digraph_simple())

NULL ° o NULL

NULL NULL NULL NULL

linkedbst.insert(38)

display(linkedbst.get_digraph_simple())

S ONORC

NULL NULL NULL NULL NULL NULL

linkedbst.insert(3)

display(linkedbst.get_digraph_simple())

NULL NULL NULL NULL NULL NULL NULL NULL

linkedbst.insert(9)

display(linkedbst.get_digraph_simple())

NULL

NULL NULL NULL

NULL NULL

NULL NULL

linkedbst.get_preorder()

[10, 5, 3, 8, 9, 27, 16, 38]

linkedbst.get_inorder()

[3, 5, 8, 9, 10, 16, 27, 38]

linkedbst.get_postorder()

(3, 9, 8, 5, 16, 38, 27, 10]

linkedbst.delete(50)

Error delete: tidak ditemukan data yang bernilai 50

display(linkedbst.get_digraph_simple())

NULL

NULL NULL NULL

NULL NULL

NULL NULL

linkedbst.delete(3)

display(linkedbst.get_digraph_simple())

NULL

NULL NULL

NULL NULL

linkedbst.delete(8)

display(linkedbst.get_digraph_simple())

S ONORC

NULL NULL NULL NULL NULL NULL

linkedbst.delete(27)

display(linkedbst.get_digraph_simple())

NULL ° ° NULL

NULL NULL NULL NULL

linkedbst.delete(10)

display(linkedbst.get_digraph_simple())

NULL ° NULL NULL

NULL NULL

linkedbst.delete(16, inorder_pred=True)

display(linkedbst.get_digraph_simple())

NULL NULL NULL NULL

(TODO) (Pengayaan) LinkedBintree dari preorder, inorder, dan/atau
postorder

Kita akan membuat LinkedBintree saja, karena height dari tree yang akan dibentuk tidak bisa ditentukan
sebelum tree selesai terbentuk, sedangkan pembuatan ArrayBintree melibatkan penentuan height di
awal-awal sebelum tree dibentuk.

Jika diberikan preorder dengan inorder, atau postorder dengan inorder, maka hanya ada satu binary tree yang
mungkin.

Namun, apabila diberikan preorder dengan postorder, maka binary tree yang dibentuk belum tentu unik.
Meskipun demikian, apabila ditambahkan syarat bahwa binary tree yang dibentuk harus bersifat complete,
maka binary tree yang dibentuk menjadi unik.

Oleh karena itu, untuk kasus diberikan preorder dengan postorder, ada algoritma biasa (tanpa syarat
tersebut) dan algoritma dengan syarat tersebut.

LinkedBintree daripreorder dan inorder

def linkedbintree_from_preorder_inorder(
preorder, inorder, is_starting_node=True

Nanti di paling bawah tree kalau inorder sudah kosong,
tidak perlu buat node lagi; langsung return None (NULL)
if len(inorder) == 0:

return None

1. Di antara semua elemen inorder, mana yang paling kiri di preorder?
Simpan index inorder nya
selesai = False
preorder_idx = 0
while (preorder_idx < len(preorder)) and (not selesai):
lihat tiap elemen preorder dari kiri ke kanan,
elemen_preorder = preorder[preorder_idx]
dan untuk tiap elemen preorder, periksa satu-satu apakah sama dengan
salah satu elemen inorder
inorder_idx = 0
while (inorder_idx < len(inorder)) and (not selesai):
if inorder[inorder_idx] == elemen_preorder:

selesai = True
else:
inorder_idx += 1
preorder_idx += 1

2. Buatlah node dengan data di index tersebut di inorder.
Kalau belum ada root (karena LinkedBintree belum dibentuk sama sekali),
buatlah objek LinkedBintree dengan rootnya adalah node tersebut
current_root = BintreeNode(inorder[inorder_idx])
if is_starting_node:

result = LinkedBintree()

result.root = current_root

3. Pisah inorder menjadi dua bagian,

yaitu sebelah kiri dari elemen inorder_idx dan sebelah kanan darinya
inorder_left = inorder[:inorder_idx]

inorder_right = inorder[(inorder_idx+1):]

current_root.left = linkedbintree_from_preorder_inorder(
preorder, inorder_left, is_starting_node=False

)

current_root.right = linkedbintree_from_preorder_inorder(
preorder, inorder_right, is_starting_node=False

if is_starting_node:
return result

else:
return current_root

hasil_pre_in = linkedbintree_from_preorder_inorder(
preorder=[26, 89, 43, 90, 16, 54, 11, 72, 35],
inorder=[89, 90, 16, 43, 26, 54, 72, 11, 35]

display(hasil_pre_in.get_digraph_simple())

NULL NULL NULL NULL NULL

NULL NULL

LinkedBintree dari postorder dan inorder

Algoritma ini hampir sama dengan algoritma membentuk binary tree dari preorder dan inorder. Bedanya, di
algoritma ini, dicari elemen inorder yang paling kanan di postorder, daripada yang paling kiri di preorder.

def linkedbintree_from_postorder_inorder(
postorder, inorder, is_starting_node=True

):

Nanti di paling bawah tree kalau inorder sudah kosong,
tidak perlu buat node lagi; langsung return None (NULL)
if len(inorder) == 0:

return None

1. Di antara semua elemen inorder, mana yang paling KANAN di postorder?
Simpan index inorder nya
selesai = False
postorder_idx = len(postorder)-1 # mulai dari paling kanan, daripada dari
while (postorder_idx >= @) and (not selesai):

lihat tiap elemen preorder DARI KANAN KE KIRI,

elemen_postorder = postorder[postorder_idx]

dan untuk tiap elemen postorder, periksa satu-satu apakah sama denga

salah satu elemen inorder

inorder_idx = 0

while (inorder_idx < len(inorder)) and (not selesai):

if inorder[inorder_idx] == elemen_postorder:

selesai = True
else:
inorder_idx += 1
postorder_idx —= 1

2. Buatlah node dengan data di index tersebut di inorder.
Kalau belum ada root (karena LinkedBintree belum dibentuk sama sekali),
buatlah objek LinkedBintree dengan rootnya adalah node tersebut
current_root = BintreeNode(inorder[inorder_idx])
if is_starting_node:

result = LinkedBintree()

result.root = current_root

3. Pisah inorder menjadi dua bagian,

yaitu sebelah kiri dari elemen inorder_idx dan sebelah kanan darinya
inorder_left = inorder[:inorder_idx]

inorder_right = inorder[(inorder_idx+1):]

current_root.left = linkedbintree_from_postorder_inorder(
postorder, inorder_left, is_starting_node=False

)

current_root.right = linkedbintree_from_postorder_inorder(
postorder, inorder_right, is_starting_node=False

if is_starting_node:
return result

else:
return current_root

hasil_post_in = linkedbintree_from_postorder_inorder(
postorder=[16, 90, 43, 89, 72, 35, 11, 54, 261,
inorder=[89, 90, 16, 43, 26, 54, 72, 11, 35]

display(hasil_post_in.get_digraph_simple())

NULL

NULL

NULL NULL

NULL NULL

(TODO) LinkedBintree dari preorder dan postorder (cara biasa)

def linkedbintree_from_preorder_postorder(

):

preorder, postorder, is_starting_node=True

if (not is_starting_node):

if len(preorder) == @ or len(postorder) == 0:
return None
if len(preorder) == 1:

return BintreeNode(preorder[0])
if len(postorder) ==
return BintreeNode(postorder[0])

1. Buatlah node baru dengan datanya adalah preorder[0]
(atau sama saja elemen terakhir dari postorder).
Kalau belum ada root (karena LinkedBintree belum dibentuk sama sekali),
buatlah objek LinkedBintree dengan rootnya adalah node tersebut
current_root = BintreeNode(preorder([0])
if is_starting_node:

result = LinkedBintree()

result.root = current_root

2. Tentukan list postorder untuk left subtree dan untuk right subtree:
2a. Carilah letak preorder[1l] di postorder, misal postorder_idx
2b. Belah postorder menjadi dua, dengan postorder_idx masuk ke kiri,

dan elemen terakhir postorder tidak masuk keduanya

postorder_idx = 0
while (postorder_idx < len(postorder) and
postorder[postorder_idx] != preorder[1]):
postorder_idx += 1

0 <= indeks < (postorder_idx+1)
postorder_left = postorder[@ : (postorder_idx+1)]

(postorder_idx+1) <= indeks < elemen terakhir (indeks -1)
postorder_right = postorder[(postorder_idx+1) : -1]

3. Tentukan list preorder untuk left subtree dan untuk right subtree:
3a. Carilah letak postorder[-2] di preorder, misal preorder_idx

3b. Belah preorder menjadi dua, dengan preorder_idx masuk ke kanan,
dan elemen pertama preorder tidak masuk keduanya

preorder_idx = 0
while (preorder_idx < len(preorder) and
preorder[preorder_idx] != postorder[-2]):
preorder_idx += 1

1 <= indeks < preorder_idx
preorder_left = preorder[1 : preorder_idx]

preorder_idx <= indeks
preorder_right = preorder[preorder_idx :]

print("preorder_left", len(preorder_left))
print("preorder_right", len(preorder_right))
print("postorder_left", len(postorder_left))
print("postorder_right", len(postorder_right))

4. Langkah rekursif: melakukan langkah yang sama di left subtree dan
right subtree, hasilnya disambung ke current_root

current_root.left = linkedbintree_from_preorder_postorder(
preorder=preorder_left, postorder=postorder_left,
is_starting_node=False

)

current_root.right = linkedbintree_from_preorder_postorder(
preorder=preorder_right, postorder=postorder_right,
is_starting_node=False

if is_starting_node:
return result

else:
return current_root

test_pre_post = linkedbintree_from_preorder_postorder(
preorderz[llFll’ IIBII' IIAII’ IIDII’ IICII' IIEII’ IIGII’ IIIII' IIHII]'
postorder=[llAII’ IICII' IIEII, IIDII' IIBII' IIHII, IIIII' IIGII' IIFII]

preorder_left 5

preorder_right 3
postorder_left 5
postorder_right 3
preorder_left 1

preorder_right 3
postorder_left 1
postorder_right 3
preorder_left 1

preorder_right 1
postorder_left 1
postorder_right 1
preorder_left 0

preorder_right 2
postorder_left 2
postorder_right 0

display(test_pre_post.get_digraph_simple())

NULL

NULL

NULL NULL NULL NULL

(TODO) LinkedBintree daripreorder dan postorder (cara dijamin
complete)

(TODO) (Pengayaan) LinkedBST dari preorder atau postorder

(TODO) LinkedBST dari preorder

(TODO) LinkedBST dari postorder

(TODO) (Pengayaan) m-ary tree

