
Modul PraktikumModul Praktikum

STRUKTUR DATA

2022

Program Studi MatematikaProgram Studi Matematika
Fakultas Sains dan TeknologiFakultas Sains dan Teknologi
UIN Maulana Malik Ibrahim MalangUIN Maulana Malik Ibrahim Malang

Modul 1 Struktur Data: Pengantar OOP

Pada praktikum kali ini, kita akan membahas tentang class , yang nantinya akan kita gunakan untuk

membuat berbagai jenis struktur data. Sekaligus, kita juga akan membahas tentang object-oriented

programming atau OOP (pemrograman berorientasi objek atau PBO), yaitu semacam “paradigma

pemrograman” (gaya pemrograman) di mana kita sering berurusan dengan class .

Intinya, hari ini kita akan membahas tentang class dan serba-serbi (filosofi) penggunaannya.

Apa itu class ? Apa itu OOP?

Di pertemuan sebelumnya, ketika belajar tentang tipe data di Python, kita sering menjumpai nama tipe

data disertai istilah class . Sebelum memahami apa itu class , kita bisa paham dulu tentang konsep

“objek”.

Di Python (dan banyak bahasa pemrograman lainnya yang “mendukung OOP”), sebuah “objek” adalah

sesuatu yang bisa memiliki variabel-variabel tersendiri (disebut atribut) serta fungsi-fungsi tersendiri

(disebut method) di bawah satu nama yang sama (yaitu objek tersebut).

Kemudian, sebuah class adalah semacam blueprint untuk membuat objek. Ketika kita ingin membuat

objek, kita harus membuat definisi class nya terlebih dahulu sebagai blueprint untuk objek tersebut.

Barulah, setelah definisi class nya ada, kita bisa membuat objek sebanyak-banyaknya dari class yang

sama.

Sebagai blueprint untuk membuat objek, suatu definisi class mencakupi atribut serta method yang akan

terdefinisi untuk objek yang akan dibuat. Artinya, semua objek yang dibuat dari class yang sama itu akan

memiliki “struktur” yang sama, baik variabel-variabel maupun fungsi-fungsi yang terkandung di dalam tiap

objek.

(Itulah mengapa tipe data dianggap sebagai class di Python. Misalnya, untuk tipe data str , yaitu <class
'str'> , semua string di Python tentunya “memiliki sifat yang sama”, seperti bisa di-format dengan method

.format)

Agar lebih paham, mari kita coba membuat class pertama kita, yaitu class Orang , untuk menyimpan

data orang yang terdiri dari nama dan umur. Kemudian, kita akan membuat beberapa objek, yaitu beberapa

Orang , yang masing-masing bisa memiliki data nama dan umur tersendiri.

class Orang:
 def __init__(self, nama, umur):
 self.nama = nama
 self.umur = umur

Lab Komputasi Program Studi Matematika

https://aslab-math-ui.github.io/modul-prak/

Pada definisi class Orang di atas, kita baru merancang atribut apa saja yang akan terkandung dalam

objek, yaitu nama dan umur .

Pada baris pertama, kita menuliskan kata class untuk memulai suatu definisi class baru, diikuti

dengan nama class nya (di sini namanya Orang).

Pada baris kedua, kita memulai definisi suatu method istimewa yang bernama __init__ yang dimulai

dan diakhiri dengan dua garis bawah. Method yang satu ini harus selalu ada di tiap definisi class , dan

istilahnya adalah constructor. Argumen yang masuk ke dalam method ini adalah self yang merujuk ke

“diri sendiri” (objek yang bersangkutan), kemudian dua atribut yang bisa ditentukan ketika objek

dibuat, yaitu nama dan umur
Di dalam definisi __init__ di atas (baris ketiga dan keempat), nilai self.nama dan self.umur akan

dipasangkan menjadi nama dan umur yang “masuk ke dalam method” (yaitu ditentukan ketika objek

dibuat).

Kalau baru pertama kali lihat, mungkin syntax definisi class rasanya sangat aneh dan asing. Tidak masalah,

itu normal. Ketiknya pelan-pelan saja. Kalau belum begitu paham, juga tidak masalah, ikuti saja. Perlahan,

kita akan terus-menerus memberi tambahan ke definisi class Orang tersebut agar lebih paham.

Semoga menjadi lebih jelas setelah melihat syntax pembuatan objek:

Kemudian, kita bisa melihat atribut objek seperti berikut:

Bisma
19

Vero
20

Perhatikan bahwa masing-masing atribut diakses melalui objek yang bersangkutan. Terlihat kegunaan

objek sebagai penampung beberapa variabel (atribut) di bawah satu nama yang sama.

Selain melihat, tentunya kita juga bisa melakukan assignment:

21

Bahkan, kita bisa melakukan variasi assignment lainnya seperti biasa, misalnya +=

24

orang1 = Orang("Bisma", 19)
orang2 = Orang("Vero", 20)

print(orang1.nama)
print(orang1.umur)

print(orang2.nama)
print(orang2.umur)

orang1.umur = 21
print(orang1.umur)

orang1.umur += 3
print(orang1.umur)

Kalau dirasa perlu, kita dapat membuat fungsi yang akan menerima suatu objek Orang lalu akan mengubah

data umur .`

Sehingga, bisa digunakan seperti berikut:

25

Perhatikan bahwa objek di Python bersifat pass-by-reference! Artinya, apabila suatu objek dimasukkan ke

dalam fungsi, kemudian dimodifikasi di dalam fungsi tersebut, maka modifikasi tersebut juga berdampak

hingga di luar fungsi.

Definisi fungsi ulangtahun yang telah kita buat di atas sebenarnya bisa dimasukkan ke dalam definisi

class Orang sebagai suatu method.

Perhatikan, ini adalah pendefinisian ulang! Ini adalah definisi baru untuk class Orang . Sedangkan, objek-

objek yang sudah kita buat sebelumnya masih menganut definisi yang lama. Sehingga, setelah ini, kita harus

membuat ulang objek agar mengikuti definisi class Orang yang baru.

Perhatikan juga, ada sedikit perbedaan istilah pada fungsi ulangtahun : tadinya, objek yang masuk itu kita

sebut orang , sekarang kita sebut self . Istilah self ini memang sudah menjadi kebiasaan di Python untuk

merujuk ke diri sendiri, yaitu objek yang bersangkutan. Tiap definisi method selalu harus diawali dengan

masuknya objek yang bersangkutan (yang biasa disebut self), sudah menjadi formalitas di Python.

Itulah mengapa, di definisi __init__ seolah-olah ada tiga variabel yang masuk yaitu self , nama , dan

umur , meskipun yang diperlukan ketika membuat objeknya hanyalah nama dan umur .

Mari kita buat ulang orang1 :

Kita bisa melihat atributnya:

Bisma
19

Kemudian, kita bisa menggunakan method ulangtahun yang telah kita buat, lalu melihat data umur

terbaru:

def ulangtahun(orang):
 orang.umur += 1

ulangtahun(orang1)
print(orang1.umur)

class Orang:
 def __init__(self, nama, umur):
 self.nama = nama
 self.umur = umur
 def ulangtahun(self):
 self.umur += 1

orang1 = Orang("Bisma", 19)

print(orang1.nama)
print(orang1.umur)

20

Penggunaan method memang seperti itu, sangat mirip dengan mengakses atribut, bedanya adalah bahwa

method berupa fungsi. Di sini, kita bisa melihat, baik atribut maupun method suatu objek itu sama-sama

berada di bawah satu nama yang sama, yaitu objek yang bersangkutan (di sini, baik atribut umur maupun

method ulangtahun diakses melalui orang1).

Kalau mau, kita bisa melakukannya lagi:

21

Tentu saja, kegunaan class tidak sebatas itu. Bahkan, ada semacam “paradigma pemrograman” (gaya

pemrograman) di mana kita sering berurusan dengan class , yang disebut OOP. Agar lebih paham juga

tentang class dan kegunaannya, kita akan mempelajari dasar-dasar OOP, yang tercakup oleh empat pilar

(tiang) OOP.

Empat pilar OOP

Empat pilar OOP adalah:

1. Encapsulation (pembungkusan)

2. Abstraction (abstraksi; kebalikan dari “mendetail”)

3. Inheritance (pewarisan sifat)

4. Polymorphism (“banyak bentuk”)

Istilah prinsip polymorphism memang sulit diterjemahkan. Kita akan membahas masing-masing keempat

prinsip OOP tersebut.

Sejauh ini, kita sudah merasakan bagaimana variabel (atribut) dan fungsi (method) sama-sama berada di

bawah satu nama yang sama, yaitu objek yang bersangkutan. Seolah-olah, atribut dan method tersebut

dibungkus ke dalam objek tersebut. Inilah yang dinamakan prinsip encapsulation atau pembungkusan.

Namun, ada juga konsep data hiding, di mana atribut objek sebaiknya diakses dan dimodifikasi melalui

method saja. Method untuk memperoleh (mengakses) nilai atribut tertentu disebut getter, dan method untuk

memasang nilai baru untuk atribut tertentu disebut setter.

Prinsip data hiding seringkali dianggap bagian dari prinsip encapsulation (tetapi terkadang dianggap bagian

dari abstraction yang akan kita bahas selanjutnya).

Kita akan mendefinisikan ulang class Orang agar memiliki getter dan setter untuk atribut umur .

orang1.ulangtahun()
print(orang1.umur)

orang1.ulangtahun()
print(orang1.umur)

Encapsulation dan Abstraction

class Orang:
 def __init__(self, nama, umur):
 self.nama = nama
 self.umur = umur

Perhatikan bahwa method get_umur melakukan return . Penggunaannya akan mirip dengan fungsi

seperti biasanya. Kemudian, method set_umur akan menerima satu input di dalam kurungnya (sedangkan

self hanya untuk formalitas).

Kita bisa membuat objek seperti biasa…

Lalu kita bisa melihat umurnya seperti ini:

19

Atau bahkan kita bisa membuat variabel baru yang menyimpan umur yang diperoleh:

19

Kemudian, kita bisa memasang nilai baru untuk atribut umur:

Lalu memperoleh kembali umur yang baru:

30

Sebenarnya, tujuan getter dan setter adalah untuk berjaga-jaga agar tidak terjadi hal yang aneh. Misalnya,

saat ini, kita masih bisa memasang umur menjadi negatif:

-5

Kita dapat menambahkan if statement pada definisi method set_umur di definisi class Orang untuk

mencegah umur dipasang menjadi negatif:

 def ulangtahun(self):
 self.umur += 1
 def get_umur(self):
 return self.umur
 def set_umur(self, baru):
 self.umur = baru

orang1 = Orang("Bisma", 19)

print(orang1.get_umur())

berapa_tahun = orang1.get_umur()
print(berapa_tahun)

orang1.set_umur(30)

orang1.get_umur()

orang1.umur = -5
print(orang1.umur)

class Orang:
 def __init__(self, nama, umur):
 self.nama = nama
 self.umur = umur
 def ulangtahun(self):

Sehingga, setelah membuat objek, kita bisa mencoba:

error: umur tidak bisa negatif

Dengan begitu, data umur masih aman:

19

Sedangkan, pemasangan umur menjadi bilangan yang tidak negatif tetap berjalan dengan lancar:

25

Apakah kemudian kita masih bisa menuliskan misalnya orang1.umur = -5 ? Masih bisa, tetapi setidaknya,

sekarang dengan adanya getter dan setter untuk atribut umur , kita bisa menjadikan kebiasaan agar selalu

menggunakan get_umur dan set_umur ketika ingin berurusan dengan data umur, tidak lagi melalui

self.umur , agar terjamin tidak akan terjadi keanehan seperti itu. Biasanya, istilahnya, atribut umur
disebut private, karena diharapkan tidak bisa diakses dari luar secara langsung, hanya boleh melalui method.

Bahkan, kita dapat menggunakan getter dan setter di dalam definisi method lainnya. Contohnya, yang

tadinya method ulangtahun didefinisikan sebagai self.umur += 1 , kita bisa menggantikannya dengan

get_umur dan set_umur :

 self.umur += 1
 def get_umur(self):
 return self.umur
 def set_umur(self, baru):
 if baru >= 0:
 self.umur = baru
 else:
 print("error: umur tidak bisa negatif")

orang1 = Orang("Bisma", 19)

orang1.set_umur(-5)

orang1.get_umur()

orang1.set_umur(25)
print(orang1.get_umur())

class Orang:
 def __init__(self, nama, umur):
 self.nama = nama
 self.umur = umur
 def ulangtahun(self):
 self.set_umur(self.get_umur() + 1)
 def get_umur(self):
 return self.umur
 def set_umur(self, baru):
 if baru >= 0:
 self.umur = baru
 else:
 print("error: umur tidak bisa negatif")

Pada definisi baru di atas untuk method ulangtahun , konsepnya sebagai berikut:

1. Peroleh umur saat ini dengan self.get_umur
2. Tambah satu

3. Hasil yang baru itu dijadikan umur yang baru menggunakan self.set_umur

Saat ini, orang1 masih menggunakan definisi method ulangtahun yang lama. Mari kita buat objek baru

dari definisi class Orang yang baru bernama orang3 , agar bisa dibandingkan:

Kemudian, kita gunakan method ulangtahun pada keduanya:

Kita bisa melihat umur baru masing-masing:

20
20

Ternyata hasilnya sama. Artinya, kedua cara mendefinisikan method ulangtahun itu memberikan hasil

yang sama.

Perhatikan bahwa, dari segi penggunaan, untuk menambahkan satu ke data umur , kita tinggal memanggil

method ulangtahun . Kita tidak perlu memikirkan internalnya seperti apa. Bahkan, kita bisa mengubah

definisinya secara internal, tetapi cara penggunaannya dari luar tetap sama.

Selain itu, untuk memasang data umur baru tanpa pusing, kita bisa langsung menggunakan set_umur .

Bahkan, kita tidak perlu mengkhawatirkan kasus umur negatif; method tersebut bisa langsung

menanganinya. Sehingga, kapanpun kita ingin memasang data umur yang baru, kita tidak perlu lagi

membuat if statement untuk memastikan umurnya tidak negatif, karena sudah ditangani oleh set_umur .

Kedua contoh method di atas menggambarkan bagaimana method bisa sangat mempermudah proses

pemrograman kita dengan objek. Prinsip abstraction menekankan penggunaan method dengan cara seperti

itu agar kita tidak perlu terlalu memusingkan detailnya. Misalnya, kita tidak perlu memusingkan cara

mendefinisikan method ulangtahun , dan kita tidak perlu memusingkan kasus umur negatif berkat adanya

method set_umur , pokoknya tinggal pakai. Lagipula, maksudnya “abstraksi” adalah kebalikan dari

“mendetail”.

Selain tidak pusing, manfaat lain dari abstraction adalah, kapanpun kita mau, kita bisa memodifikasi definisi

method di definisi class nya saja, tanpa harus mengubah kode yang menggunakan method tersebut.

Bayangkan apabila tidak ada method ulangtahun , sehingga kita menjadi harus mengubah self.umur +=
1 menjadi self.set_umur(self.get_umur() + 1) di mana-mana. Betapa ribetnya.

Sebelum belajar tentang inheritance, mari kita buat satu method lagi yaitu perkenalan :

orang3 = Orang("Bisma", 19)
orang1.set_umur(19) # kita samakan dulu umurnya

orang1.ulangtahun()
orang3.ulangtahun()

print(orang1.get_umur())
print(orang3.get_umur())

Inheritance (pewarisan sifat)

Seperti biasa, kita bisa membuat objek:

Kemudian, kita bisa memanggil method perkenalan

Halo, nama saya Bisma dan umur saya 19 tahun.
Halo, nama saya Vero dan umur saya 20 tahun.

Lalu, misalnya, kita ingin membuat class baru yaitu class Mahasiswa , yang akan memiliki atribut

tambahan yaitu NPM.

Tentunya, mahasiswa adalah orang, sehingga kita harapkan bahwa semua yang bisa dilakukan oleh objek

dari class Orang juga bisa dilakukan oleh objek dari class Mahasiswa .

Untungnya, daripada harus copy-paste semua method yang ada di class Orang ke dalam definisi class
Mahasiswa , kita tinggal memanfaatkan inheritance (pewarisan sifat), dengan syntax yang bisa dilihat di baris

pertama di kode berikut:

Sesingkat itu! Kita tinggal menyediakan constructor __init__ yang baru yang lebih sesuai untuk class
Mahasiswa , karena adanya atribut baru yaitu NPM. Semua method lainnya akan tetap dimiliki oleh objek

dari class Mahasiswa karena sudah diwariskan dari class Orang , hanya dengan menuliskan class
Mahasiswa(Orang) pada baris pertama definisi class Mahasiswa .

class yang asli (di sini class Orang) biasa disebut parent class, base class, atau superclass, sedangkan

class yang mewariskan (di sini class Mahasiswa) biasa disebut child class, derived class, atau subclass.

class Orang:
 def __init__(self, nama, umur):
 self.nama = nama
 self.umur = umur
 def ulangtahun(self):
 self.set_umur(self.get_umur() + 1)
 def get_umur(self):
 return self.umur
 def set_umur(self, baru):
 if baru >= 0:
 self.umur = baru
 else:
 print("error: umur tidak bisa negatif")
 def perkenalan(self):
 print("Halo, nama saya " + self.nama + " dan umur saya " + str(self.um

orang1 = Orang("Bisma", 19)
orang2 = Orang("Vero", 20)

orang1.perkenalan()
orang2.perkenalan()

class Mahasiswa(Orang):
 def __init__(self, nama, umur, NPM):
 self.nama = nama
 self.umur = umur
 self.NPM = NPM

Kemudian, pembuatan objek dari class Mahasiswa dilakukan seperti biasa (jangan lupa, kali ini ada tiga

atribut):

Seperti biasa, kita bisa lihat isi atributnya satu per satu:

Bisma
19
2106635581

Semua method yang dimiliki oleh objek Orang itu juga dimiliki oleh objek Mahasiswa . Misalnya, kita bisa

menggunakan method ulangtahun dan get_umur :

20

Kita juga bisa melakukan perkenalan

Halo, nama saya Bisma dan umur saya 20 tahun.

Namun, isi perkenalannya sama persis seperti objek Orang , bahkan tidak ada keterangan NPM. Bagaimana

kalau kita mau mahasiswa melakukan perkenalan dengan NPM juga? Apakah kita bisa memodifikasi

method ini khusus untuk class Mahasiswa ? Jawabannya adalah bisa, berkat prinsip polymorphism.

Setelah melakukan inheritance, seandainya ada method yang diwaris yang dirasa perlu diubah atau

dibedakan dari parent class, kita tinggal mendefinisikan ulang method tersebut di dalam definisi child class

yang bersangkutan.

Misalnya, kita bisa mendefinisikan ulang method perkenalan di dalam definisi class Mahasiswa agar

berbeda dengan perkenalan di class Orang :

Kita sudah memiliki orang1 sebagai objek dari class Orang , sehingga bisa kita bandingkan dengan objek

dari class Mahasiswa yang perlu kita buat ulang:

mhs1 = Mahasiswa("Bisma", 19, 2106635581)

print(mhs1.nama)
print(mhs1.umur)
print(mhs1.NPM)

mhs1.ulangtahun()
print(mhs1.get_umur())

mhs1.perkenalan()

Polymorphism (“banyak bentuk”)

class Mahasiswa(Orang):
 def __init__(self, nama, umur, NPM):
 self.nama = nama
 self.umur = umur
 self.NPM = NPM
 def perkenalan(self):
 print("Perkenalkan, saya " + self.nama + " dengan NPM " + str(self.NPM

Sekarang kita lakukan perkenalan untuk masing-masing:

Halo, nama saya Bisma dan umur saya 19 tahun.
Perkenalkan, saya Bisma dengan NPM 2106635581

Hasilnya berbeda, sesuai harapan. Namun, nama method nya tetap sama, yaitu perkenalan . Seolah-olah,

method perkenalan ini adalah “method yang sama” tetapi “memiliki bentuk yang berbeda-beda”, yaitu

berbeda antara di class Orang dengan class Mahasiswa .

Bahkan, kalau mau, kita bisa membuat child class yang baru lagi dari class Orang , dan mendefinisikan

ulang atau “menimpa” lagi method perkenalan untuk child class tersebut. Sehingga, method perkenalan
ini seperti memiliki banyak bentuk.

“Banyak bentuk” itulah yang dimaksud dengan polymorphism. Kita bisa melakukan inheritance berkali-kali,

kemudian “menimpa” suatu method pada child class dengan definisi yang berbeda daripada di parent class.

Penerapan lain dari prinsip polymorphism adalah fitur yang bernama operator overloading, yang kebetulan

dimiliki oleh Python dan sejumlah “bahasa OOP” lainnya (bahasa yang “mendukung OOP”, yaitu memiliki

fitur class , inheritance dan sebagainya sesuai dengan empat pilar OOP).

Operator overloading

Misalnya kita membuat class Pecahan yang terdiri dari atribut pembilang dan penyebut :

Kita bisa membuat pecahan setengah seperti berikut:

Kita bisa melihat isi atribut pembilang dan penyebut :

1
2

Misalnya kita ada pecahan lain…

… alangkah indahnya kalau kita bisa menjumlahkannya begitu saja…

mhs1 = Mahasiswa("Bisma", 19, 2106635581)

orang1.perkenalan()
mhs1.perkenalan()

class Pecahan:
 def __init__(self, pembilang, penyebut):
 self.pembilang = pembilang
 self.penyebut = penyebut

frac1 = Pecahan(1, 2)

print(frac1.pembilang)
print(frac1.penyebut)

frac2 = Pecahan(3, 5)

TypeError: unsupported operand type(s) for +: 'Pecahan' and 'Pecahan'

Terjadi error, karena saat ini, operator + belum ada artinya untuk objek Pecahan .

Akan tetapi, ada method istimewa yang bisa kita definisikan agar operator + menjadi terdefinisi, lho!

Namanya adalah __add__ .

Secara matematis, penjumlahan pecahan bisa dituliskan seperti berikut:

Sehingga, kita bisa mendefinisikan method __add__ sebagai berikut:

Lalu, kita bisa membuat ulang kedua pecahan yang tadi, mencoba menjumlahkannya, dan melihat data

atribut pembilang dan penyebut di hasil jumlahannya:

11
10

Wow, keren! Hasilnya benar ya!

Selain penjumlahan, kita bisa mendefinisikan banyak operator lainnya untuk class . Pendefinisian

operator untuk class disebut operator overloading (“menimpa operator”), dan selalu melibatkan method

istimewa atau magic methods (juga disebut dunder methods atau double underscore methods) yang sudah

memiliki nama tertentu. Kebetulan, constructor yang dinamakan __init__ juga termasuk magic method.

Kalian bisa membaca lebih lanjut tentang operator overloading dan magic method lainnya di link berikut:

https://www.geeksforgeeks.org/operator-overloading-in-python/

frac1 + frac2

a

b
+

c

d
=

ad+ bc

bd

class Pecahan:
 def __init__(self, pembilang, penyebut):
 self.pembilang = pembilang
 self.penyebut = penyebut
 def __add__(self, pecahan2):
 a = self.pembilang
 b = self.penyebut
 c = pecahan2.pembilang
 d = pecahan2.penyebut
 atas = a*d + b*c
 bawah = b*d
 hasil = Pecahan(atas, bawah)
 return hasil

frac1 = Pecahan(1, 2)
frac2 = Pecahan(3, 5)

frac3 = frac1 + frac2
print(frac3.pembilang)
print(frac3.penyebut)

https://www.geeksforgeeks.org/operator-overloading-in-python/

Modul 2 Struktur Data: Array, Searching, Sorting

Pada pertemuan ini, kita akan membahas tentang operasi pada array, termasuk melihat beberapa

algoritma-algoritma searching dan sorting pada array.

Operasi pada array

Sebagian besar pembahasan di praktikum kali ini bisa menggunakan list biasa atau menggunakan array

dari numpy , terutama materi searching dan sorting. Namun, untuk materi operasi pada array, kita akan

menggunakan array dari numpy .

Traversal pada array adalah “mengunjungi” elemen array satu per satu, dari awal sampai akhir. Tujuannya

bisa untuk print saja, atau untuk menjumlahkan, atau yang lain. Apapun tujuannya, kalau itu melibatkan

mengunjungi elemen array satu per satu, maka itu termasuk traversal.

Kita bisa mendeklarasikan suatu array dengan ukurannya saja, kemudian mengisi elemennya satu-per-satu.

[0. 0.5 1. 1.5 2.]

[5. 20. -3. 7. -11.]

Alternatifnya, kita bisa langsung saja menentukan elemen array sejak awal dibuat.

import numpy as np

Traversal

A = np.empty(5)

print(A) # isinya masih garbage value

A[0] = 5
A[1] = 20
A[2] = -3
A[3] = 7
A[4] = -11

print(A)

A = np.array([5, 20, -3, 7, -11])
print(A)

Lab Komputasi Program Studi Matematika

https://aslab-math-ui.github.io/modul-prak/

[5 20 -3 7 -11]

Berikut beberapa contoh traversal pada array.

5
20
-3
7
-11

18

Array memiliki ukuran yang tetap. Terkadang, ketika kita membuat array, belum tentu keseluruhan array itu

langsung kita gunakan semua. Bisa jadi, di awal kita hanya menggunakan sebagian saja, namun nantinya

akan kita gunakan seutuhnya. Sehingga, untuk mengelola data yang kita simpan di dalam array (sebagai

struktur data), perlu ada mekanisme “memasukkan” dan “menghapus” data pada array.

(Pembahasan “insertion” dan “deletion” pada array mungkin agak aneh, tetapi sangat masuk akal untuk

berbagai struktur data yang akan kita pelajari ke depannya, sehingga kita bahas terlebih dahulu untuk

array.

Misalkan kita hanya mendeklarasikan suatu array. Belum ada data yang dimasukkan, sehingga kita bisa

menyimpan variabel untuk “ukuran” array saat ini adalah nol.

Saat ini, array tersebut masih sepenuhnya berisi garbage value.

[13. 20. 3. 7. 11.]

Kita bisa memasukkan elemen, misalnya 13, seperti berikut.

Dengan begitu, array menjadi seperti ini:

for i in range(0, len(A)):
 print(A[i])

sum = 0
for i in range(0, len(A)):
 sum += A[i]
print(sum)

“Insertion”

B = np.empty(5)
B_size = 0

print(B)

insert 97
B[B_size] = 97

update data "ukuran" array,
bertambah satu karena memasukkan satu elemen baru
B_size += 1

[97. 20. 3. 7. 11.]

Perhatikan nilai variabel “ukuran” yang kita simpan:

1

Saat ini, baru satu elemen yang kita masukkan ke dalam array. Sehingga, semua elemen lainnya itu tidak kita

anggap, karena masih berupa garbage value (data sampah).

[97. -17. 3. 7. 11.]

2

[97. -17. 43. 7. 11.]

3

Selain memasukkan data, kita juga bisa menghapus data. Kalau kita hanya ingin menghapus elemen

“terakhir” (di data kita yaitu 43), maka kita tinggal “melupakan” elemen tersebut (sehingga statusnya

menjadi garbage value) dengan mengurangi variabel “ukuran”:

[97. -17. 43. 7. 11.]

print(B)

print(B_size)

insert -17
B[B_size] = -17
B_size += 1

print(B)

print(B_size)

insert 43
B[B_size] = 43
B_size += 1

print(B)

print(B_size)

“Deletion”

delete elemen "terakhir" (dari yang sudah kita isi)
B_size = B_size - 1

print(B)

2

Memang array nya tidak berubah sama sekali, tapi ini masalah mindset (hehe). Tadinya, kita mengakui

bahwa array berisi tiga buah data yang kita simpan, tetapi sekarang kita menganggap hanya berisi dua buah

data. Sehingga, data ketiga yang tadi kita anggap data, itu sekarang menjadi garbage value yang bukan

tanggung jawab kita.

Mari kita coba insert beberapa elemen lagi.

[97. -17. 53. -98. 71.]

5

Sekarang array sudah penuh. Bagaimana kalau misalnya kita ingin menghapus elemen pada indeks 2 (yaitu

53)? Kita perlu menggeser elemen indeks 3 menjadi indeks 2, kemudian indeks 4 menjadi indeks 3,

sehingga “ukuran” array menjadi berkurang satu (elemen terakhir menjadi garbage value).

[97. -17. -98. 71. 71.]

4

Jangan lupa, sekarang “ukuran” data kita hanya empat buah data, sehingga elemen terakhir di situ (yang

kebetulan juga 71) adalah garbage value yang tidak kita anggap.

Searching

print(B_size)

insert 53, -98, 71

B[B_size] = 53
B_size += 1

B[B_size] = -98
B_size += 1

B[B_size] = 71
B_size += 1

print(B)

print(B_size)

delete elemen pada indeks 2
for i in range(2, len(B)-1):
 B[i] = B[i+1]
B_size = B_size - 1

print(B)

print(B_size)

Algoritma searching, seperti namanya, adalah algoritma yang digunakan untuk mencari sesuatu dalam

suatu list. Umumnya, algoritma semacam ini memiliki 2 input, yaitu suatu “key” atau elemen yang ingin

dicari, dan suatu array atau list tempat pencarian key tersebut.

Terdapat 2 algoritma umum untuk searching, yaitu:

Linear Search

Binary Search

Linear search adalah algoritma searching di mana setiap elemen pada list dibandingkan satu per satu

dengan key. Pada algoritma ini, kita akan mencoba untuk mencari keberadaan key pada list, serta index dari

key tersebut (jika ada). Kalau key tidak ditemukan, kita bisa return -1 (memang sudah tradisi untuk

menandakan ketiadaan elemen pada array, lagipula mustahil ada indeks -1 pada array).

5

Binary search adalah algoritma searching dimana suatu list dicek apakah nilai tengahnya adalah key. Jika

tidak, list dipecah dua dan searching dilanjut tergantung posisi key relatif dari nilai tengah tersebut (apakah

lebih kecil atau lebih besar).

Linear Search

def linear_search(arr, key):
 for i in range(0, len(arr)):
 if arr[i] == key:
 return i

 # sampai sini, berarti elemen tidak ditemukan
 return -1

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
linear_search(A, 8)

Binary Search

def binary_search(arr, key):
 left_idx = 0
 right_idx = len(A)
 found = False
 while (not found) and (left_idx <= right_idx):
 center_idx = int((left_idx + right_idx) / 2)
 if arr[center_idx] == key:
 return center_idx
 elif arr[center_idx] > key:
 right_idx = center_idx - 1
 else:
 left_idx = center_idx + 1
 # keluar loop berarti tidak ditemukan
 return -1

A = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
binary_search(A, 14)

6

Sorting

Terdapat 5 algoritma umum dalam sorting yang akan dijelaskan, yaitu:

Bubble Sort

Insertion Sort

Selection Sort

Quick Sort

Merge Sort

Bubble sort adalah algoritma sorting yang cara kerjanya adalah dengan membandingkan elemen yang

bersebelahan secara berurutan, lalu ditukar jika urutannya salah. Bubble sort melibatkan beberapa kali

“pass”, yaitu beberapa kali melihat array dari awal sampai akhir.

Tentunya, bubble sort akan berhenti ketika array sudah terurut. Namun, bagaimana cara mengetahui

apakah array sudah terurut? Salah satu caranya, di tiap pass, kita bisa menganggap array sudah terurut

(ditandai dengan variabel boolean), lalu melakukan bubble sort, dan apabila ada elemen yang masih belum

terurut, maka ketika ditukar, kita menandai array tersebut belum terurut. Sedangkan, apabila semua

elemen sudah terurut (tidak terjadi pertukaran), variabel boolean tetap bernilai True , sehingga array sudah

terurut dan bubble sort sudah selesai. Untuk itu, digunakan while loop.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Sebenarnya, banyaknya pass tidak akan melebihi . Sehingga, daripada menggunakan while loop

dan menandai array, kita bisa menggunakan for loop saja, untuk pass ke-i.

Bubble Sort

def bubble_sort_while(A):
 n = len(A)
 # di awal, array belum terurut
 selesai = False
 while (not selesai):
 # di awal pass, asumsi array sudah terurut
 selesai = True
 for i in range(0, n-1):
 # jika ada elemen yang belum terurut (perlu ditukar),
 if A[i] > A[i+1]:
 # tandai array belum terurut
 selesai = False
 # lalu tukar
 A[i], A[i+1] = A[i+1], A[i]
 # pass selesai

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
bubble_sort_while(A)
print(A)

(n − 1)

def bubble_sort_for(A):
 n = len(A)
 # Lakukan pass sebanyak (n-1) kali, yaitu pass ke-i, i=0, 1, ..., (n-2)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Cara kerja dari insertion sort adalah dengan membandingkan elemen baru dengan elemen sebelumnya dan

ditempatkan di tempat yang sesuai. Insertion sort mulai dari indeks ke-1, yang mana elemen pada indeks

tersebut dibandingkan dengan indeks sebelumnya. Jika posisinya tidak sesuai, maka elemen ditukar, dan

seterusnya hingga posisinya sesuai. Lalu iterasi dilanjutkan dengan elemen indeks ke-2, hingga elemen

telah diiterasi semua.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Selection sort melakukan sorting dengan memasukkan nilai minimum dari suatu list. Jika diberikan suatu

list , maka algoritma mencari nilai minimum dari , lalu ditukar dengan

elemen . Selanjutnya algoritma mencari nilai minimum dari , lalu ditukar dengan

elemen , dan seterusnya.

 for i in range(n-1):
 # Iterasi untuk tiap elemen ke-j, j=0, 1, ..., (n-2)
 for j in range(n-1):
 # Apabila elemen ke-j ternyata lebih besar daripada yang setelahny
 if A[j] > A[j+1]:
 # Maka tukar kedua elemen agar urutannya benar
 A[j], A[j+1] = A[j+1], A[j]

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
bubble_sort_for(A)
print(A)

Insertion Sort

def insertion_sort(A):
 n = len(A)
 # Untuk tiap elemen di array... (kecuali elemen paling pertama, indeks 0)
 for i in range(1, n):
 j = i
 # Selama elemen itu lebih kecil daripada elemen di sebelah kirinya,
 # tukar (geser elemen itu ke sebelah kirinya) agar menjadi terurut
 while A[j] < A[j-1]:
 A[j], A[j-1] = A[j-1], A[j]
 j -= 1 # j berkurang karena bergeser ke kiri
 # Kalau elemen sudah di ujung kiri array,
 # udah ga ada elemen di sebelah kirinya lagi, jadi keluar aja
 if j == 0:
 break

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
insertion_sort(A)

Selection Sort

A[0.. (n − 1)] A[0.. (n − 1)]

A[0] A[1.. (n − 1)]

A[1]

def selection_sort(A):
 n = len(A)
 # Untuk tiap elemen ke-i, akan ditukarkan dengan elemen minimum yang
 # ada di sebelah kanannya

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Merge sort melakukan sort dengan memecah list menjadi dua secara rekursif. Lalu sorting dilakukan

dengan melakukan merge pada hasil pecahan list. Merge adalah proses pada dua list yang menyatukan dua

list terurut menjadi satu list terurut. Merge dilakukan hingga list utuh kembali.

 for i in range(n-1):
 # Asumsi awal: elemen yang sedang dilihat (elemen ke-i) adalah minimum
 min_idx = i
 min_val = A[min_idx]

 # Periksa masing-masing elemen selanjutnya...
 for j in range(i+1, n):
 # Kalau ternyata ketemu elemen yang lebih kecil lagi...
 if A[j] < min_val:
 # ... maka itu menjadi minimum yang terbaru
 min_val = A[j]
 min_idx = j
 # Ketika keluar for loop, sudah diperoleh elemen minimum sesungguhnya
 # Tukar elemen minimum dengan elemen ke-i
 A[i], A[min_idx] = A[min_idx], A[i]

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
selection_sort(A)

Merge Sort

def merge_sort(A):
 n = len(A)
 # Seandainya hanya berisi satu elemen, tidak perlu dilakukan apa-apa
 if len(A) > 1:
 # indeks middle (elemen tengah)
 m = int(n/2)
 # Array A dipisah menjadi A1 (sebelah kiri) dan A2 (sebelah kanan)
 A1 = A[:m]
 A2 = A[m:]
 # Lakukan merge sort pada keduanya
 merge_sort(A1)
 merge_sort(A2)

 # Di bawah ini adalah proses penggabungan dari A1 dan A2 yang
 # masing-masing sudah terurut

 i = 0 # indeks untuk A1
 j = 0 # indeks untuk A2
 k = 0 # indeks untuk array/list baru yang nantinya sudah terurut

 # Loop selama kedua array masih punya elemen yang
 # belum dimasukkan ke array/list baru
 while i < len(A1) and j < len(A2):
 # Kalau ternyata elemen pada A1 yang lebih kecil...
 if A1[i] <= A2[j]:
 # ... maka itulah yang dimasukkan ke array/list baru
 A[k] = A1[i]
 i += 1 # lanjut ke elemen berikutnya untuk A1

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Secara keseluruhan, algoritma quicksort (yang bersifat rekursif) terdiri dari langkah berikut:

1. Apabila array kosong atau terdiri dari satu elemen, sorting selesai. Selain itu, lanjut ke langkah berikut.

2. Pilih salah satu elemen di array sebagai “pivot” (Bebas, yang penting konsisten. Biasanya elemen

pertama. Kemungkinan lain: elemen tengah, elemen terakhir, dsb)

3. Lakukan “partisi”, yaitu proses yang membuat kondisi array menjadi seperti berikut:

| semua elemen yang | pivot | semua elemen yang |
| lebih kecil dari pivot | | lebih besar dari pivot |

4. Lakukan quicksort pada sebelah kiri pivot dan pada sebelah kanan pivot.

Untuk proses “partisi”, ada dua cara utama untuk melakukannya (algoritma partisi), yaitu algoritma partisi

Hoare dan algoritma partisi Lomuto.

 # Selain itu, berarti elemen pada A2 yang lebih kecil...
 else:
 # ... maka itulah yang dimasukkan
 A[k] = A2[j]
 j += 1 # lanjut ke elemen berikutnya untuk A2
 # Ukuran array baru sudah bertambah satu
 k += 1
 # Keluar loop, berarti salah satu array sudah habis
 # Ada dua kemungkinan, yaitu A1 yang belum habis, atau A2 yang belum.
 # Sehingga keduanya perlu "dihabiskan"

 # Menghabiskan A1 kalau belum habis
 while i < len(A1):
 A[k] = A1[i]
 i += 1
 k += 1

 # Menghabiskan A2 kalau belum habis
 while j < len(A2):
 A[k] = A2[j]
 j += 1
 k += 1

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
merge_sort(A)
print(A)

Quicksort

Quicksort dengan partisi Hoare

def partition_hoare(A, left_idx, right_idx):
 # Buat "pointer" low dan high (simpan indeksnya saja)
 low_idx = left_idx
 high_idx = right_idx

 # Diasumsikan array sudah terpartisi dengan baik (padahal belom hehe),
 # - tugas low adalah memeriksa dari kiri (apakah benar sudah dipartisi),
 # - tugas high adalah memeriksa dari kanan.
 # Sudah terpartisi artinya:
 # - sebelah kiri pivot adalah yang lebih kecil dari pivot
 # - sebelah kanan pivot adalah yang lebih besar dari pivot

 # Pilih indeks pivot, bebas, misal elemen paling pertama (paling kiri)
 pivot_idx = left_idx
 pivot_val = A[pivot_idx]

 # Loop selama low belum melewati high
 # (syarat ini sangat penting, hingga diperiksa berkali-kali)
 while low_idx <= high_idx:

 # low lanjut ke kanan hingga menemukan elemen yang posisinya salah,
 # yaitu elemen yang nilainya lebih besar dari pivot
 while (low_idx <= high_idx) and not (A[low_idx] > pivot_val):
 low_idx += 1

 # high lanjut ke kiri hingga menemukan elemen yang posisinya salah,
 # yaitu elemen yang nilainya lebih kecil dari pivot
 while (low_idx <= high_idx) and not (A[high_idx] < pivot_val):
 high_idx -= 1

 # low dan high sama-sama menunjuk pada elemen yang posisinya salah,
 # keduanya akan menjadi benar kalau posisinya ditukar
 if low_idx <= high_idx:
 A[low_idx], A[high_idx] = A[high_idx], A[low_idx]

 # Apabila elemen pivot ternyata ikut ditukar,
 # pastikan data posisinya (pivot_idx) di-update.
 if pivot_idx == low_idx: # Apabila tadinya pivot di low,
 pivot_idx = high_idx # maka sekarang pivot di high.
 elif pivot_idx == high_idx: # Namun apabila tadinya pivot di high,
 pivot_idx = low_idx # maka sekarang pivot di low.

 # Kalau sudah keluar loop, berarti low sudah melewati high;
 # Sudah ketemu garis baginya, yaitu antara low dan high.
 # Saat ini, sebelah kiri garis bagi sudah lebih kecil dari pivot,
 # dan sebelah kanan garis bagi sudah lebih besar dari pivot.
 # Sekarang kita tinggal menempatkan pivot pada garis bagi tersebut

 # Tukar pivot dengan high kalau pivot di sebelah kiri high,
 if pivot_idx <= high_idx:
 A[pivot_idx], A[high_idx] = A[high_idx], A[pivot_idx]
 pivot_idx = high_idx

 # atau tukar pivot dengan low kalau pivot di sebelah kanan low
 else:
 A[pivot_idx], A[low_idx] = A[low_idx], A[pivot_idx]
 pivot_idx = low_idx

 # Partisi sudah selesai, return posisi pivot
 # supaya jadi tahu di mana garis baginya
 return pivot_idx

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def quicksort_hoare(A, left_idx=None, right_idx=None):
 # Kalau left_idx dan right_idx tidak diinput, otomatis menjadi None
 # dan kalau begitu, berarti sebenarnya quicksort mau dilakukan pada
 # keseluruhan array, sehingga ujung kiri adalah indeks 0 dan
 # ujung kanan adalah indeks terakhir (n-1 di mana n adalah panjang array)
 if left_idx == None:
 left_idx = 0
 if right_idx == None:
 right_idx = len(A) - 1

 # Ada if statement untuk memastikan ujung kiri dan ujung kanan masih wajar
 if left_idx < right_idx:
 pivot_idx = partition_hoare(A, left_idx, right_idx)
 quicksort_hoare(A, left_idx, pivot_idx-1)
 quicksort_hoare(A, pivot_idx+1, right_idx)
 # Kalau sewaktu-waktu menjadi tidak wajar, berarti array kosong, berarti
 # quicksort sudah selesai dan tidak perlu dilakukan apa-apa lagi

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
quicksort_hoare(A)
print(A)

Quicksort dengan partisi Lomuto

def partition_lomuto(A, left_idx, right_idx):
 # Pilih elemen pivot, sepertinya untuk Lomuto harus elemen terakhir
 pivot_idx = right_idx
 pivot_val = A[pivot_idx]

 # Asumsi awal: semua elemen lebih besar dari nilai pivot,
 # sehingga "separator" atau "garis pemisah" ada di ujung kiri,
 # bahkan di sebelah kiri elemen pertama
 sep = left_idx - 1

 # Periksa tiap elemen...
 for j in range(left_idx, right_idx):
 # Kalau ternyata ada elemen yang tidak lebih besar dari pivot...
 if A[j] <= pivot_val:
 # Majukan garis pemisah...
 sep = sep + 1
 # Lalu tukar elemen itu (yang seharusnya di sebelah kiri pivot),
 # agar menjadi di (sebelah kiri) garis pemisah
 A[sep], A[j] = A[j], A[sep]
 # Nantinya, pivot akan diletakkan di posisi indeks sep+1.
 # Data indeks "sep" menunjuk pada indeks terakhir yang
 # elemennya lebih kecil dari pivot.

 # Keluar for loop, sekarang semua elemen sudah diperiksa,
 # indeks sep menunjuk pada elemen terakhir yang lebih kecil dari pivot.
 # Maka, pivot bisa diletakkan di posisi sep+1.
 # Tukar elemen pivot dengan elemen apapun yang sedang di sep+1.
 A[sep+1], A[pivot_idx] = A[pivot_idx], A[sep+1]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Perhatikan bahwa, meskipun algoritma partisi Hoare dan partisi Lomuto sangat berbeda, ketika di fungsi

quicksort (quicksort_hoare dan quicksort_lomuto), kodenya sama, hanya berbeda di fungsi partisi

yang digunakan.

 # Sekarang, pivot ada di sep+1
 pivot_idx = sep+1

 # Partisi sudah selesai, return posisi pivot
 # supaya jadi tahu di mana garis baginya
 return pivot_idx

def quicksort_lomuto(A, left_idx=None, right_idx=None):
 if left_idx == None:
 left_idx = 0
 if right_idx == None:
 right_idx = len(A) - 1

 if left_idx < right_idx:
 pivot_idx = partition_lomuto(A, left_idx, right_idx)
 quicksort_lomuto(A, left_idx, pivot_idx - 1)
 quicksort_lomuto(A, pivot_idx + 1, right_idx)

A = [1, 5, 2, 3, 4, 8, 7, 6, 10, 9]
quicksort_lomuto(A)
print(A)

Modul 3 Struktur Data: Graphviz, Linked List

Pada praktikum kali ini, kita akan membahas mengenai linked list, serta cara memvisualisasikannya

menggunakan yang namanya Graphviz.

Sebelum mengikuti praktikum ini, ada baiknya kalian me-review kembali modul berikut:

Modul 1: Pengantar OOP

Untuk apa? Kita akan menyusun struktur data linked list menggunakan class :) semoga kalian sudah cukup

paham tentang class yaa. Kalau belum pun, semoga kalian akan lebih paham setelah praktikum kali ini :D

Graphviz

Graphviz adalah semacam software yang bisa membuat visualisasi “graf” yang bagus. Mungkin di antara

kalian belum semuanya kenal dengan graf, itu tidak masalah. Kurang lebih, suatu graf adalah kumpulan

bulet-bulet (disebut simpul, node, atau vertex) yang disambung oleh “busur” (juga disebut arc atau edge), di

mana tiap edge bisa berupa garis biasa atau berupa panah.

Berikut contoh graf yang digambar dengan Graphviz:

Lab Komputasi Program Studi Matematika

https://aslab-math-ui.github.io/modul-prak/semuahalaman/modulprak/2023/ganjil/strukdat_py/Strukdat2023_Modul05.html
https://aslab-math-ui.github.io/modul-prak/

A

B C

F

E

D

 tes

GHI

qwerty

Lho, di mata kuliah Struktur Data kan ga ada graf. Untuk apa kita pelajari Graphviz?

Dengan Graphviz, kita bisa membuat visualisasi untuk berbagai struktur data nantinya, termasuk linked list

hari ini. Kita bisa meminta Graphviz untuk membuat bentuk node yang tidak sederhana, termasuk bentuk

node yang kita kenal di linked list, kemudian membuat edge yang berupa panah, sehingga kita benar-benar

bisa menggambarkan suatu linked list :)

Sebelum bisa menggunakan Graphviz, perlu di-install terlebih dahulu.

Di Google Colaboratory, kalian tinggal mengetik:

pip install graphviz

Sedangkan, apabila menggunakan Jupyter Notebook melalui Anaconda, buka Anaconda Prompt lalu ketik:

conda install graphviz

Tunggu instalasi selesai, barulah buka Jupyter Notebook dan ketik

pip install graphviz

Note:

Apabila Anda menggunakan Jupyter Notebook tetapi tidak melalui Anaconda, langkah conda
install graphviz bisa digantikan dengan menginstal Graphviz dari

https://graphviz.gitlab.io/download/

Untuk penulisan pip , ada kemungkinan kalian perlu mengetik !pip dengan tanda seru di awal.

Biasanya tidak perlu, tapi kalau menjadi error, boleh dicoba dengan tanda seru.

Instalasi Graphviz

https://graphviz.gitlab.io/download/

Setelah instalasi selesai, kita bisa import:

Dengan Graphviz, ada dua jenis gambar graf yang bisa kita buat:

Digraph (graf berarah, yaitu tiap edge bisa berupa panah maupun garis biasa)

Graph (graf sederhana, yaitu tiap edge hanya bisa berupa garis biasa, bukan panah)

Karena Digraph lebih banyak fiturnya, kita akan membuat Digraph saja.

Sebagai contoh sederhana, kita bisa membuat Digraph yang terdiri dari dua node yaitu A dan B, dengan

edge berupa panah yang menghubungkan A ke B. Kita buat objek Digraph terlebih dahulu:

Kemudian, kita bisa menambahkan node A dan B sebagai berikut:

Selanjutnya, kita bisa membuat/menambahkan suatu edge dari A ke B, seperti berikut:

Sekarang kita bisa lihat grafnya:

A

B

Note: apabila fungsi display tidak dikenal, silakan import:

from IPython.display import display

Sebenarnya, kita bisa saja menambahkan edge baru tanpa membuat node terlebih dahulu. Contohnya,

menambahkan edge dari A ke C (suatu node baru):

Kita bisa lihat lagi:

Mengenal Graphviz: node dan edge

import graphviz as gv

graf1 = gv.Digraph()

graf1.node("A")
graf1.node("B")

graf1.edge("A", "B")

display(graf1)

graf1.edge("A", "C")

display(graf1)

A

B C

Bahkan, kita bisa membuat ulang graf di atas dengan cara seperti berikut:

A

B C

Menariknya, kita bisa saja membuat panah yang menunjuk ke dirinya sendiri.

A

B

Kita juga bisa membuat dua panah berlawanan arah di antara dua node seperti berikut:

graf2 = gv.Digraph()
graf2.edge("A", "B")
graf2.edge("A", "C")

display(graf2)

graf3 = gv.Digraph()
graf3.edge("A", "B")
graf3.edge("B", "B")

display(graf3)

graf4 = gv.Digraph()
graf4.edge("A", "B")
graf4.edge("B", "A")

display(graf4)

A

B

Membuat satu panah yang dua arah juga bisa, dengan menentukan dir atau direction dari edge tersebut

menjadi "both" seperti berikut:

A

B

Daripada panah, kita juga bisa membuat edge berupa garis biasa, dengan dir="none" (bukan None ya!)

A

B

Sejauh ini, grafnya selalu cenderung “dari atas ke bawah”. Daripada seperti itu, kita bisa mengubahnya

menjadi kiri ke kanan untuk keseluruhan graf. Caranya, kita memasang graph_attr atau atribut graf,

berbentuk dict , dan di dalamnya kita buat "rankdir": "LR" (left-right) seperti di bawah ini.

Setelah objek Digraph dibuat, barulah tiap edge yang kita tambahkan akan dari kiri ke kanan.

graf5 = gv.Digraph()
graf5.edge("A", "B", dir="both")

display(graf5)

graf6 = gv.Digraph()
graf6.edge("A", "B", dir="none")

display(graf6)

graf7 = gv.Digraph(graph_attr={"rankdir": "LR"})
graf7.edge("A", "B")

display(graf7)

A B

Selain node diberi nama, edge juga bisa diberi keterangan, lho! Caranya, pasang nilai label ketika membuat

edge baru:

A Btest

Sebenarnya, di dalam suatu node, ada yang namanya name (atau ID) dan ada juga yang disebut label .

label adalah tulisan yang tampil di gambar pada node tersebut

name atau ID adalah sebutan yang dikenal oleh Graphviz ketika misalnya ingin membuat edge

Selama ini, yang kita tentukan adalah name . Kebetulan, khusus node, apabila label tidak ditentukan, maka

otomatis akan diambil dari name .

Berikut ini, kita bisa coba menentukan name dan label sekaligus ketika membuat node:

Alprog

Strukdat

Perlu dicatat, apabila kita menambahkan edge sekaligus membuat node baru, kita tidak bisa memasang

label untuk node baru tersebut.

Sehingga, apabila kalian ingin membuat node dengan label tertentu, yang nantinya akan disambung ke

node lain dengan edge, maka sebaiknya node baru tersebut dibuat dengan .node() terlebih dahulu, barulah

name nya digunakan ketika membuat .edge()

Selain itu, bahkan graf itu sendiri juga bisa memiliki nama, yang ditentukan ketika membuat objek grafnya.

graf8 = gv.Digraph(graph_attr={"rankdir": "LR"})
graf8.edge("A", "B", label="test")

display(graf8)

graf9 = gv.Digraph()
graf9.node("matkul1", label="Alprog")
graf9.node("matkul2", label="Strukdat")
graf9.edge("matkul1", "matkul2")

display(graf9)

graf10 = gv.Digraph("Nama graf")
graf10.edge("A", "B")

A

B

C

Coba letakkan mouse kalian pada gambarnya selama beberapa detik. Akan muncul tulisan “Nama graf”.

(Kalau tidak muncul, coba klik kanan dulu, pencet “Open image in New Tab” atau semacamnya.)

Apabila kalian ingin menentukan misalnya rankdir , tuliskan setelah nama grafnya.

A B C

Sebenarnya, Graphviz melibatkan yang namanya bahasa DOT (dibaca “dot”), yaitu semacam “bahasa

komputer” untuk mendeskripsikan graf, yang kemudian diolah oleh Graphviz menjadi gambar.

(Sebenarnya, bahasa DOT mudah dipahami dan bisa kalian pelajari sendiri kalo iseng :D)

Tiap kali kita membuat graf baru dengan Graphviz melalui Python ini, Graphviz selalu menyusun bahasa

DOT terlebih dahulu, baru mengolah bahasa DOT tersebut menjadi gambar.

Kita bisa melihat bahasa DOT untuk tiap graf melalui atribut .source seperti berikut:

digraph "Graf ke kanan" {
 graph [rankdir=LR]
 A -> B
 B -> C
}

graf10.edge("B", "C")

display(graf10)

graf11 = gv.Digraph("Graf ke kanan", graph_attr={"rankdir": "LR"})
graf11.edge("A", "B")
graf11.edge("B", "C")

display(graf11)

Import/export, bahasa DOT, file .gv

print(graf11.source)

Kemudian, kita bisa memasukkan bahasa DOT tersebut ke dalam semacam software yang bisa mengolah

bahasa DOT menjadi gambar. Contohnya adalah link berikut:

https://dreampuf.github.io/GraphvizOnline/

Sebaliknya, dari bahasa DOT, Graphviz juga bisa membuat objek Digraph misalnya, menggunakan

graphviz.Source() seperti berikut:

A B C

Selain import seperti itu, baik bahasa DOT maupun gambar yang dibuat oleh Graphviz bisa di-export

dengan menetapkan .format terlebih dahulu (misalnya “svg” atau “png”), lalu menggunakan .render()
sebagai berikut:

'Graf ke kanan.gv.svg'

Seperti di Modul 3 kemarin ketika membahas I/O, ada file baru yang muncul.

Apabila menggunakan Google Colaboratory, silakan tekan tombol folder di sebelah kiri.

Apabila menggunakan Jupyter Notebook, silakan periksa folder yang di dalamnya ada file .ipynb
yang sedang kalian gunakan.

Akan muncul dua file baru, yaitu:

1. Graf ke kanan.gv
2. Graf ke kanan.gv.svg

File pertama adalah file .gv (Graphviz) yang mengandung bahasa DOT yang disusun sebelum diolah

menjadi gambar. File kedua adalah file gambar yang diolah, dalam format sesuai dengan yang kita tentukan.

Kita bisa membaca isi Graf ke kanan.gv sebagaimana kita membaca isi text file:

digraph "Graf ke kanan" {
 graph [rankdir=LR]
 A -> B

graf12 = gv.Source("""
digraph "Graf ke kanan" {
 graph [rankdir=LR]
 A -> B
 B -> C
}
""")

display(graf12)

graf11.format = "svg"
graf11.render()

with open("Graf ke kanan.gv", "r") as isi:
 print(isi.read())

https://dreampuf.github.io/GraphvizOnline/
https://aslab-math-ui.github.io/modul-prak/semuahalaman/modulprak/2023/ganjil/strukdat_py/Strukdat2023_Modul03.html

 B -> C
}

Selain itu, perhatikan bahwa nama file nya sesuai dengan nama graf yang kita tentukan ketika membuat

objek graf11 tadi. Kalau lupa, kita bisa memeriksa nama graf melalui atribut .nama

Graf ke kanan

Dengan atribut itu pula, kita bisa mengubah nama grafnya:

Sehingga, ketika misalnya Graphviz menyusun bahasa DOT, akan digunakan nama yang baru:

digraph "Nama baru" {
 graph [rankdir=LR]
 A -> B
 B -> C
}

Ingat atribut label yang bisa dipasang ketika membuat suatu node? Sebenarnya, kita bisa memanfaatkan

atribut tersebut untuk membuat bentuk node sesuka hati kita, lho! Terutama, kita bisa membuat node

dengan bentuk seperti tabel.

Penulisan label seperti tabel ini mirip seperti struktur bahasa HTML, sehingga disebut HTML-like labels.

Perhatikan syntax (penulisan) berikut.

print(graf11.name)

graf11.name = "Nama baru"

print(graf11.source)

Variasi node dengan HTML-like labels

graf13 = gv.Digraph()
graf13.node("A", shape="none", label="""<
<TABLE>
 <TR>
 <TD>P</TD>
 <TD>Q</TD>
 </TR>
 <TR>
 <TD>R</TD>
 <TD>S</TD>
 </TR>
</TABLE>
>""")

graf13.node("B") # node biasa
graf13.edge("A", "B")

display(graf13)

P Q

R S

B

Perhatikan,

1. Ketika membuat node yang ingin berbentuk tabel, ditambahkan atribut shape="none" (bukan None)

di samping menulis label nya.

2. label berupa long string, sehingga diawali dan diakhiri dengan tiga tanda kutip.

3. Karakter pertama dari long string tersebut haruslah < dan karakter terakhir haruslah >
4. Kemudian, penulisan tabel diawali dengan penulisan <TABLE> , kemudian <TR> (table row) untuk tiap

baris, lalu <TD> (table data) untuk tiap sel. Masing-masing selalu ditutup dengan </TD> , </TR> , dan

</TABLE> , bagaikan keberadaan endif , endfor , endwhile dan sebagainya di pseudocode.

Agar lebih bagus, di bagian <TABLE> kita bisa menambahkan:

BORDER="0" CELLBORDER="1" CELLSPACING="0"

Seperti berikut:

P Q
R S

B

graf14 = gv.Digraph()
graf14.node("A", shape="none", label="""<
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
 <TR>
 <TD>P</TD>
 <TD>Q</TD>
 </TR>
 <TR>
 <TD>R</TD>
 <TD>S</TD>
 </TR>
</TABLE>
>""")

graf14.node("B")
graf14.edge("A", "B")

display(graf14)

Bagaimana kalau misalnya kita ingin panahnya seperti “berasal” dari sel tertentu? Caranya, kita bisa

membuat yang namanya port , misalnya di sel R, kemudian edge yang dibuat akan kita sambung dari port

tersebut, seperti berikut:

P Q
R S

B

Kalau di Microsoft Excel atau Google Sheets, kita bisa melakukan merge beberapa sel, entah secara

horizontal atau vertikal atau bahkan dua-duanya. Ketika menyusun HTML-like labels, kita bisa menggunakan

COLSPAN (merentang beberapa kolom) dan ROWSPAN (merentang beberapa baris) untuk membuat efek

seperti di-merge.

graf15 = gv.Digraph()
graf15.node("A", shape="none", label="""<
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
 <TR>
 <TD>P</TD>
 <TD>Q</TD>
 </TR>
 <TR>
 <TD PORT="port1">R</TD>
 <TD>S</TD>
 </TR>
</TABLE>
>""")

graf15.node("B")
graf15.edge("A:port1", "B")

display(graf15)

graf16 = gv.Digraph()
graf16.node("A", shape="none", label="""<
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
 <TR>
 <TD ROWSPAN="2">P</TD>
 <TD COLSPAN="2">Q</TD>
 </TR>
 <TR>
 <TD>R</TD>
 <TD>S</TD>
 </TR>
</TABLE>
>""")

graf16.node("B")
graf16.edge("A", "B")

P
Q
R S

B

(Singly) Linked List

Singly-linked list (seringkali disebut linked list saja) adalah semacam “rantai” dari node, di mana tiap node

berisi 2 nilai, yaitu data dan next (yaitu pointer ke node lain). Node yang paling pertama itu ditunjuk oleh

suatu pointer bernama head , yang menjadi awal dari linked list.

(Terkadang, pointer next ditulis LINK . Artinya dan kegunaannya sama.)

Pertama-tama, kita buat struktur node terlebih dahulu menggunakan class . (Apabila pointer next tidak

menunjuk ke apapun, biasanya ditulis NULL atau di sini None .)

Biasanya, di kuliah, disebutnya class Node atau Node saja. Namun, berhubung modul ini akan membahas

doubly-linked list dengan struktur yang agak berbeda, maka node untuk singly-linked list akan kita sebut

SLNode (singly-linked node) agar berbeda.

Kita bisa bermain-main dengan node ini sebagaimana yang dibahas di kuliah. Misalnya, kita buat node baru

yang menyimpan data 15:

Saat ini, node tersebut ditunjuk oleh pointer yang di sini kita sebut p . Secara tidak langsung, kita telah

membuat linked list dengan head nya adalah p .

Kita bisa mengakses data yang disimpan di data dan juga alamat yang tersimpan di next :

15

None

Saat ini, node yang ditunjuk oleh p itu belum menunjuk ke manapun, sehingga p.next masih bernilai

None .

display(graf16)

class SLNode:
 def __init__(self, data, next=None):
 self.data = data
 self.next = next

p = SLNode(15)

print(p.data)

print(p.next)

Kita bisa melihat alamat dari node itu sendiri menggunakan id :

4404463888

Alamat ini akan selalu berbeda tiap kali kita membuat node baru, dan di antara dua komputer kemungkinan

besar juga berbeda. Memang wajar apabila alamat yang kalian dapatkan itu berbeda dengan yang tertera di

modul.

Namun, alamat biasanya ditampilkan dalam bentuk heksadesimal (base-16), sedangkan yang kita dapatkan

dengan id masih berupa bilangan bulat desimal (base-10). Kita bisa menggunakan hex untuk mengubah

base-10 menjadi base-16:

0x10686c910

Awalan 0x itu hanya penanda bahwa bilangannya berupa heksadesimal.

Selanjutnya, kita bisa membuat node baru di p.next , yaitu yang ditunjuk oleh p , sebagai berikut:

Sehingga, data 28 itu bisa diakses dari p seperti berikut:

28

Sedangkan, setelah node berisi 15 dan node berisi 28, belum ada node lagi, sehingga:

None

Mari kita buat node baru lagi setelah node berisi 28:

Sehingga, kita bisa mengakses data masing-masing node dari p :

15
28
-3

Kita bisa juga membuat pointer baru yang menunjuk ke node yang sudah ada. Misalnya, kita bisa membuat

pointer bernama q yang menunjuk ke node yang berisi 28, seperti berikut:

print(id(p))

print(hex(id(p)))

p.next = SLNode(28)

print(p.next.data)

print(p.next.next)

p.next.next = SLNode(-3)

print(p.data)
print(p.next.data)
print(p.next.next.data)

Sehingga, p.next.next bisa diakses dengan q.next :

-3
-3

Bahkan, kita bisa mengubah data -3 menjadi yang lain melalui q , dan itu akan berubah juga jika diakses

melalui p :

-63
-63

Kok bisa? Karena, sesuai yang sudah kita tetapkan, q menunjuk ke node yang sama dengan p.next . Kita

bisa periksa alamatnya:

0x10686d780
0x10686d780

Sehingga alamat dari node yang ditunjuk oleh q.next akan sama dengan yang ditunjuk oleh p.next.next :

0x10686d000
0x10686d000

Sejauh ini, kita sudah bermain dengan node dan membuat linked list secara manual. Sebenarnya, kita juga

bisa membuat suatu class untuk suatu linked list secara keseluruhan. Di dalam class itu, kita bisa

membuat atribut (variabel) yang menyimpan head , serta berbagai method (fungsi) untuk algoritma-

algoritma operasi dasar yang kita pelajari di kuliah, seperti insert node di awal/akhir dan delete node di

awal/akhir. Dengan begitu, kita bisa menggunakan linked list dengan lebih nyaman.

Kita akan menyebutnya class SLList (singly-linked list).

q = p.next

print(p.next.next.data)
print(q.next.data)

q.next.data = -63
print(q.next.data)
print(p.next.next.data)

print(hex(id(q)))
print(hex(id(p.next)))

print(hex(id(q.next)))
print(hex(id(p.next.next)))

class SLList:
 def __init__(self):
 self.head = None

 def is_empty(self):
 if self.head == None:
 return True
 else:

 return False

 # Traversal, hanya untuk menghitung banyaknya node di linked list
 def get_size(self):
 count = 0
 current = self.head
 while current != None:
 count += 1
 current = current.next
 return count

 # Traversal, print masing-masing data node dari awal sampai akhir
 def print_all(self):
 print("head -> ", end="")
 temp = self.head
 while temp != None:
 print(temp.data, end = " -> ")
 temp = temp.next
 print("None")

 # Traversal, semacam linear search, cari letak node dengan data tertentu
 def get_pos(self, x):
 pos = -1
 current = self.head
 while current != None:
 pos += 1
 if current.data == x:
 return pos
 current = current.next
 return -1

 def ins_front(self, newdata):
 newnode = SLNode(newdata)
 newnode.next = self.head
 self.head = newnode

 def ins_end(self, newdata):
 newnode = SLNode(newdata)
 if self.is_empty():
 self.head = newnode
 else:
 temp = self.head
 while temp.next != None:
 temp = temp.next

 # sekarang temp sudah di node terakhir
 temp.next = newnode

 def ins_pos(self, newdata, pos):
 if pos == 0:
 self.ins_front(newdata)
 else:
 current_pos = 0
 current = self.head
 while (current != None) and (current_pos != pos-1):
 current = current.next
 current_pos += 1

 # Keluar loop, bisa karena current == None atau current_pos == pos
 # Kalau karena current_pos == pos-1, bisa insert
 if (current_pos == pos-1):
 newnode = SLNode(newdata)
 temp = current.next
 current.next = newnode
 newnode.next = temp
 # Tapi kalau karena current == None,
 # berarti posisi yang diminta melampaui panjang linked list
 else:
 print("Error: posisi melebihi panjang linked list")

 def del_front(self):
 if self.is_empty():
 print("Error: linked list sudah kosong")
 else:
 temp = self.head.next
 del self.head
 self.head = temp

 def del_end(self):
 if self.is_empty():
 print("Error: linked list sudah kosong")
 else:
 temp = self.head
 while temp.next.next != None:
 temp = temp.next

 # sekarang temp ada di node sebelum terakhir
 del temp.next
 temp.next = None

 # Mirip ins_pos, hanya berbeda di bagian current_pos == pos-1
 def del_pos(self, pos):
 if pos == 0:
 self.del_front()
 else:
 current_pos = 0
 current = self.head
 while (current != None) and (current_pos != pos-1):
 current = current.next
 current_pos += 1
 # Keluar loop, bisa karena current == None atau current_pos == pos
 # Kalau karena current_pos == pos-1, maka bisa dihapus selama
 # current.next yang mau dihapus itu memang ada
 if (current_pos == pos-1) and (current.next != None):
 temp = current.next.next
 del current.next
 current.next = temp
 # Tapi kalau karena current == None, atau current.next tidak ada,
 # berarti posisi yang diminta melampaui panjang linked list
 else:
 print("Error: posisi melebihi panjang linked list")

 # Menghapus semua node di linked list
 def del_all(self):
 while (not self.is_empty()):

 self.del_front()

 # Method untuk memperoleh digraph yang menggambarkan linked list nya :D
 def get_digraph(self):
 # Buat digraph baru yang sifatnya dari kiri ke kanan
 new_digraph = gv.Digraph(graph_attr={"rankdir": "LR"})

 # Pointer untuk menunjuk ke tiap node, mulai dari node pertama
 # (akan dilakukan traversal)
 current = self.head

 # Untuk menghitung node ke-sekian untuk nama node di Graphviz,
 # sehingga head menunjuk ke node0, lalu node0 menunjuk ke node1, dst
 counter = 0

 # Memperoleh alamat yang sedang disimpan di head
 # - asumsi awal: tidak ada alamat (None)
 next_id = None
 next_name = "node0" # ini nanti untuk nama node berikutnya di Graphviz
 # - kalau ternyata ada alamat...
 if current != None:
 # maka simpan alamat tersebut
 next_id = hex(id(current))
 # kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
 next_name = "node0:id"

 # Label (tabel) untuk pointer head
 # - pembuka tabel
 str_label = "<"
 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
 # - baris head
 str_label += "<TR><TD>head</TD></TR>"
 # - baris alamat (sekalian membuat port namanya "contents")
 str_label += "<TR><TD PORT=\"contents\">" + str(next_id) + "</TD></TR>
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node head, membuat edge dari head ke node berikutnya
 new_digraph.node("head", shape="none", label=str_label)
 new_digraph.edge("head:contents", next_name)
 # dari port "contents" ke node berikutnya, yang namanya next_name

 # Selama node yang ditunjuk bukan None, buatlah node nya di Graphviz,
 # lalu lanjut ke node selanjutnya (ini traversal)
 while current != None:
 # Alamat yang tersimpan pada current.next
 # - asumsi awal: tidak ada alamat; current adalah node terakhir
 next_id = None
 # - kalau ternyata ada alamat...
 if current.next != None:
 # maka simpan alamat tersebut
 next_id = hex(id(current.next))

 # Persiapan label (tabel) untuk node
 # - pembuka tabel
 str_label = "<"

 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0
 # - baris tulisan "data", "next"
 str_label += "<TR><TD>data</TD><TD>next</TD></TR>"
 # - baris untuk isi data dan isi next
 str_label += "<TR>"
 str_label += "<TD>" + str(current.data) + "</TD>"
 str_label += "<TD PORT=\"next\">" + str(next_id) + "</TD>"
 str_label += "</TR>"
 # - baris tulisan "alamat node", merentang dua kolom
 str_label += "<TR><TD COLSPAN=\"2\">alamat node</TD></TR>"
 # - baris untuk isi alamat node, merentang dua kolom
 str_label += "<TR>"
 str_label += "<TD PORT=\"id\" COLSPAN=\"2\">"
 str_label += str(hex(id(current)))
 str_label += "</TD>"
 str_label += "</TR>"
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node baru di Graphviz dengan label (tabel) tersebut
 new_digraph.node("node" + str(counter), shape="none", label = str_

 # Menentukan nama dua port yang bakal disambung dengan edge,
 # yaitu (node saat ini):next disambung ke node(berikutnya):id
 # yaitu bagian "next" disambung ke bagian alamat di node berikutny
 nama_node_next = "node" + str(counter) + ":next"
 if current.next != None:
 nama_alamat_node_berikutnya = "node" + str(counter+1) + ":id"
 # atau ke node(berikutnya) saja tanpa id kalau itu ternyata None,
 # karena None tidak akan memiliki port id
 else:
 nama_alamat_node_berikutnya = "node" + str(counter+1)

 # Menyambung keduanya
 new_digraph.edge(nama_node_next, nama_alamat_node_berikutnya)

 # Lanjut ke node selanjutnya
 current = current.next
 counter += 1
 # Kalau sudah keluar loop, artinya current menunjuk ke None
 # Berarti tinggal membuat "node" terakhir berisi tulisan None
 # (karena sambungannya sudah dibuat di dalam loop, tinggal node nya)
 new_digraph.node("node" + str(counter), shape="none", label="None")

 # Digraph sudah jadi
 return new_digraph

test = SLList()
test.ins_front(5)
test.ins_front(15)
test.ins_front(25)
test.ins_front(35)

test.print_all()

head -> 35 -> 25 -> 15 -> 5 -> None

2

-1

head -> 35 -> 25 -> 15 -> 5 -> 100 -> None

head -> 15 -> 5 -> 100 -> None

Error: posisi melebihi panjang linked list

head -> 15 -> 5 -> None

Error: posisi melebihi panjang linked list

head -> 15 -> 76 -> 5 -> None

print(test.get_pos(15))

print(test.get_pos(39))

test.ins_end(100)

test.print_all()

test.del_front()
test.del_front()

test.print_all()

test.del_pos(3)

test.del_pos(2)

test.print_all()

test.ins_pos(-42, 7)

test.ins_pos(76, 1)

test.print_all()

gambar = test.get_digraph()

display(gambar)

head
0x112f60700

data next
15 0x112f604f0

alamat node
0x112f60700

data next
76 0x112f606a0

alamat node
0x112f604f0

data next
5 None

alamat node
0x112f606a0

None

Doubly Linked List

class DLNode:
 def __init__(self, data, next=None, prev=None):
 self.data = data
 self.next = next
 self.prev = prev

class DLList:
 def __init__(self):
 self.head = None
 self.tail = None

 # Masih sama persis dengan singly linked list
 def is_empty(self):
 if self.head == None:
 return True
 else:
 return False

 # Traversal, hanya untuk menghitung banyaknya node di linked list
 # Masih sama persis dengan singly linked list
 def get_size(self):
 count = 0
 current = self.head
 while current != None:
 count += 1
 current = current.next
 return count

 # Traversal, print masing-masing data node dari awal sampai akhir
 def print_all(self):
 print("head -> ", end="")
 temp = self.head
 while (temp != None) and (temp.next != None):
 print(temp.data, end = " <-> ")
 temp = temp.next
 # Khusus node terakhir:
 if (temp != None) and (temp.next == None):
 print(temp.data, end = " <- ")
 print("tail")

 def ins_front(self, newdata):

 newnode = DLNode(newdata)
 newnode.next = self.head
 if self.head != None:
 self.head.prev = newnode
 self.head = newnode
 if self.tail == None: # jika tadinya doubly linked list kosong,
 # maka newnode menjadi node pertama, ditunjuk oleh head dan tail
 self.tail = newnode

 # Berbeda dengan singly linked list, tinggal insert di tail;
 # tidak perlu traversal
 def ins_end(self, newdata):
 newnode = DLNode(newdata)
 newnode.prev = self.tail
 if self.tail != None:
 self.tail.next = newnode
 self.tail = newnode
 if self.head == None: # jika tadinya doubly linked list kosong,
 # maka newnode menjadi node pertama, ditunjuk oleh head dan tail
 self.head = newnode

 def ins_pos(self, newdata, pos):
 if pos == 0:
 self.ins_front(newdata)
 return
 n = self.get_size()
 if pos == n:
 self.ins_end(newdata)
 elif pos > n:
 print("Error: posisi melebihi panjang linked list")
 else:
 current_pos = 0
 current = self.head
 while (current_pos != pos-1):
 current = current.next
 current_pos += 1
 # Keluar loop berarti current_pos == pos-1
 newnode = DLNode(newdata)
 newnode.prev = current
 newnode.next = current.next
 current.next = newnode
 # Sudah pasti newnode.next != None,
 # karena kasus pos == n sudah ditangani
 newnode.next.prev = newnode

 def del_front(self):
 if self.is_empty():
 print("Error: linked list sudah kosong")
 else:
 temp = self.head.next
 del self.head
 self.head = temp
 if temp != None:
 temp.prev = None
 else: # jika temp == None, maka self.head == None,
 # berarti sekarang doubly linkd list kosong,
 # sehingga tail juga menunjuk ke None

 self.tail = None

 def del_end(self):
 if self.is_empty():
 print("Error: linked list sudah kosong")
 else:
 temp = self.tail.prev
 del self.tail
 self.tail = temp
 if temp != None:
 temp.next = None
 else: # jika temp == None, maka self.tail == None,
 # berarti sekarang doubly linkd list kosong,
 # sehingga head juga menunjuk ke None
 self.head = None

 def del_pos(self, pos):
 if pos == 0:
 self.del_front()
 return
 n = self.get_size()
 if pos == n-1:
 self.del_end()
 elif pos > n-1:
 print("Error: posisi melebihi panjang linked list")
 else:
 current_pos = 0
 current = self.head
 while (current_pos != pos-1):
 current = current.next
 current_pos += 1
 temp = current.next.next
 del current.next
 current.next = temp
 # Sudah pasti temp != None,
 # karena kasus pos == (n-1) sudah ditangani
 temp.prev = current

 # Method untuk memperoleh digraph yang menggambarkan linked list nya :D
 def get_digraph(self):
 # Buat digraph baru yang sifatnya dari kiri ke kanan
 new_digraph = gv.Digraph(graph_attr={"rankdir": "LR"})

 # Pointer untuk menunjuk ke tiap node, mulai dari node pertama
 # (akan dilakukan traversal)
 current = self.head

 # Untuk menghitung node ke-sekian untuk nama node di Graphviz,
 # sehingga head menunjuk ke node0, lalu node0 menunjuk ke node1, dst
 counter = 0

 # Memperoleh alamat yang sedang disimpan di head
 # - asumsi awal: tidak ada alamat (None)
 next_id = None
 next_name = "node0" # ini nanti untuk nama node berikutnya di Graphviz
 # - kalau ternyata ada alamat...
 if current != None:

 # maka simpan alamat tersebut
 next_id = hex(id(current))
 # kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
 next_name = "node0:id"

 # Label (tabel) untuk pointer head
 # - pembuka tabel
 str_label = "<"
 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
 # - baris head
 str_label += "<TR><TD>head</TD></TR>"
 # - baris alamat (sekalian membuat port namanya "contents")
 str_label += "<TR><TD PORT=\"contents\">" + str(next_id) + "</TD></TR>
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node head, membuat edge dari head ke node berikutnya
 new_digraph.node("head", shape="none", label=str_label)
 new_digraph.edge("head:contents", next_name)
 # dari port "contents" ke node berikutnya, yang namanya next_name

 # Selama node yang ditunjuk bukan None, buatlah node nya di Graphviz,
 # lalu lanjut ke node selanjutnya (ini traversal)
 while current != None:
 # Alamat yang tersimpan pada current.next
 # - asumsi awal: tidak ada alamat; current adalah node terakhir
 next_id = None
 # - kalau ternyata ada alamat...
 if current.next != None:
 # maka simpan alamat tersebut
 next_id = hex(id(current.next))

 # serupa untuk prev
 prev_id = None
 if current.prev != None:
 prev_id = hex(id(current.prev))

 # Persiapan label (tabel) untuk node
 # - pembuka tabel
 str_label = "<"
 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0
 # - baris tulisan "prev", "data", "next"
 str_label += "<TR><TD>prev</TD><TD>data</TD><TD>next</TD></TR>"
 # - baris untuk isi prev, isi data, dan isi next
 str_label += "<TR>"
 str_label += "<TD PORT=\"prev\">" + str(prev_id) + "</TD>"
 str_label += "<TD>" + str(current.data) + "</TD>"
 str_label += "<TD PORT=\"next\">" + str(next_id) + "</TD>"
 str_label += "</TR>"
 # - baris tulisan "alamat node", merentang dua kolom
 str_label += "<TR><TD COLSPAN=\"3\">alamat node</TD></TR>"
 # - baris untuk isi alamat node, merentang dua kolom
 str_label += "<TR>"
 str_label += "<TD PORT=\"id\" COLSPAN=\"3\">"
 str_label += str(hex(id(current)))
 str_label += "</TD>"

 str_label += "</TR>"
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node baru di Graphviz dengan label (tabel) tersebut
 new_digraph.node("node" + str(counter), shape="none", label = str_

 # Menentukan nama dua port yang bakal disambung dengan edge,
 # yaitu (node saat ini):next disambung ke node(berikutnya):id
 # yaitu bagian "next" disambung ke bagian alamat di node berikutny
 nama_node_next = "node" + str(counter) + ":next"

 # tambahan untuk doubly linked list
 nama_node_prev = "node" + str(counter) + ":prev"

 if current.next != None:
 nama_alamat_node_berikutnya = "node" + str(counter+1) + ":id"
 # atau ke node(berikutnya) saja tanpa id kalau itu ternyata None,
 # karena None tidak akan memiliki port id
 else:
 nama_alamat_node_berikutnya = "node" + str(counter+1)

 # Menyambung keduanya
 new_digraph.edge(nama_node_next, nama_alamat_node_berikutnya)

 # tambahan untuk doubly linked list
 if current.prev != None:
 nama_alamat_node_sebelumnya = "node" + str(counter-1) + ":id"
 else:
 nama_alamat_node_sebelumnya = "node" + str(counter-1)
 if current == self.head:
 new_digraph.node("node-1", shape="none", label="None")
 new_digraph.edge(nama_node_prev, nama_alamat_node_sebelumnya)

 # Lanjut ke node selanjutnya
 current = current.next
 counter += 1
 # Kalau sudah keluar loop, artinya current menunjuk ke None
 # Berarti tinggal membuat "node" terakhir berisi tulisan None
 # (karena sambungannya sudah dibuat di dalam loop, tinggal node nya)
 new_digraph.node("node" + str(counter), shape="none", label="None")

 # Tambah pointer tail
 # - asumsi awal: tidak ada alamat (None)
 tail_id = None
 tail_name = "node" + str(counter-1) # ini nanti untuk nama node tail
 # - kalau ternyata ada alamat...
 if self.tail != None:
 # maka simpan alamat tersebut
 tail_id = hex(id(self.tail))
 # kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
 tail_name += ":id"

 # Label (tabel) untuk pointer tail
 # - pembuka tabel
 str_label = "<"

head -> 35 <-> 25 <-> 15 <-> 5 <- tail

head
0x112f3a620

prev data next
None 35 0x112f3bbe0

alamat node
0x112f3a620

prev data next
0x112f3a620 25 0x112f3add0

alamat node
0x112f3bbe0

None

prev data next
0x112f3bbe0 15 0x112f3b670

alamat node
0x112f3add0

prev data next
0x112f3add0 5 None

alamat node
0x112f3b670

None

tail
0x112f3b670

 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
 # - baris head
 str_label += "<TR><TD>tail</TD></TR>"
 # - baris alamat (sekalian membuat port namanya "contents")
 str_label += "<TR><TD PORT=\"contents\">" + str(tail_id) + "</TD></TR>
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node tail, membuat edge dari tail ke node nya
 new_digraph.node("tail", shape="none", label=str_label)
 new_digraph.edge("tail:contents", tail_name)
 # dari port "contents" ke node yang ditunjuk tail, namanya tail_name

 # Digraph sudah jadi
 return new_digraph

testDL = DLList()
testDL.ins_front(5)
testDL.ins_front(15)
testDL.ins_front(25)
testDL.ins_front(35)

testDL.print_all()

gambarDL = testDL.get_digraph()

display(gambarDL)

Modul 4 Struktur Data: Stack dan notasi prefix, infix, postfix

Di praktikum kali ini tentang stack, kita akan membahas implementasi stack (baik dengan array maupun

dengan linked list) serta contoh penggunaannya. Selain itu, kita akan membahas tentang penggunaan stack

ketika berurusan dengan notasi prefix, infix, dan postfix.

Implementasi dan contoh penggunaan stack

import numpy as np
import graphviz as gv

Implementasi stack dengan array

class ArrayStack:
 def __init__(self, dtype, max):
 self.dtype = dtype
 self.max = max
 self.array = np.empty(max, dtype=dtype)
 self.top = -1

 def get_size(self):
 return self.top + 1

 def get_capacity(self):
 return self.max

 def get_dtype(self):
 return self.dtype

 def is_empty(self):
 if self.get_size() > 0:
 return False
 else:
 return True

 def is_full(self):
 if self.get_size() >= self.get_capacity():
 # if top+1 >= max
 # atau sama saja, if top >= max-1
 return True
 else:
 return False

 def push(self, newdata):

Lab Komputasi Program Studi Matematika

https://aslab-math-ui.github.io/modul-prak/

 if self.is_full():
 print("Error push: stack sudah penuh.")
 else:
 self.top += 1
 self.array[self.top] = newdata

 def peek(self):
 if self.is_empty():
 print("Error peek: stack sedang kosong.")
 return None
 else:
 return self.array[self.top]

 def pop(self):
 if self.is_empty():
 print("Error pop: stack sudah kosong sebelumnya.")
 return None
 else:
 output = self.array[self.top]
 self.top -= 1
 return output

 def print_stack(self):
 i = self.top
 while i >= 0:
 print(self.array[i])
 i -= 1

 # print array
 def print_storage(self):
 print(self.array)

 def get_digraph_stack(self):
 new_digraph = gv.Digraph()
 # gambar akan terdiri dari satu tabel saja, satu kolom,
 # dan tiap baris adalah tiap elemen di stack

 tabel_besar = "<"
 # pembuka tabel
 tabel_besar += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\"
 # menambahkan tiap elemen sebagai baris tersendiri
 i = self.top
 if i < 0:
 tabel_besar += "<TR><TD>"
 tabel_besar += "(Stack sedang kosong; tidak ada data sama sekali.)
 tabel_besar += "</TD></TR>"
 while i >= 0:
 tabel_besar += "<TR><TD>"
 tabel_besar += str(self.array[i])
 tabel_besar += "</TD></TR>"
 i -= 1
 # penutup tabel
 tabel_besar += "</TABLE>"
 tabel_besar += ">"
 new_digraph.node("ArrayStack", shape="none", label=tabel_besar)
 return new_digraph

100
80
5

5

[5 80 100
 4622241330054037504 4625478292286210048]

100

100
80
5

 def get_digraph_storage(self):
 # menggambar array
 new_digraph = gv.Digraph()

 # pembuka tabel
 tabel_besar = "<"
 tabel_besar += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\"
 # tabel hanya terdiri dari satu baris
 tabel_besar += "<TR>"
 # satu elemen per kolom
 for i in range(self.get_capacity()):
 tabel_besar += "<TD>"
 tabel_besar += str(self.array[i])
 tabel_besar += "</TD>"
 # penutup baris
 tabel_besar += "</TR>"
 # penutup tabel
 tabel_besar += "</TABLE>"
 tabel_besar += ">"
 new_digraph.node("array", shape="none", label=tabel_besar)
 return new_digraph

arraystack = ArrayStack(int, 5)
arraystack.push(5)
arraystack.push(80)
arraystack.push(100)

arraystack.print_stack()

print(arraystack.get_capacity())

arraystack.print_storage()

print(arraystack.peek())

arraystack.print_stack()

100

80
5

[5 80 100
 4622241330054037504 4625478292286210048]

57
-10
80
5

[5 80 -10
 57 4625478292286210048]

57
-10
80
5

5 80 -10 57 4625478292286210048

nilai = arraystack.pop()
print(nilai)

arraystack.print_stack()

arraystack.print_storage()

arraystack.push(-10)
arraystack.push(57)

arraystack.print_stack()

arraystack.print_storage()

graf1 = arraystack.get_digraph_stack()

display(graf1)

graf2 = arraystack.get_digraph_storage()

display(graf2)

Error push: stack sudah penuh.

[5 80 -10 57 90]

90
57
-10
80
5

Error pop: stack sudah kosong sebelumnya.
None

0

[5 80 -10 57 90]

(Stack sedang kosong; tidak ada data sama sekali.)

arraystack.push(90)

arraystack.push(46)

arraystack.print_storage()

print(arraystack.pop())
print(arraystack.pop())
print(arraystack.pop())
print(arraystack.pop())
print(arraystack.pop())

print(arraystack.pop())

print(arraystack.get_size())

arraystack.print_stack()

arraystack.print_storage()

display(arraystack.get_digraph_stack())

Implementasi stack dengan singly-inked list

class SLNode:
 def __init__(self, data, next=None):
 self.data = data
 self.next = next

class SLStack:
 def __init__(self):
 # "head" ganti nama jadi top
 self.top = None

 def is_empty(self):
 if self.top == None:
 return True
 else:
 return False

 def push(self, newdata):
 newnode = SLNode(newdata)
 newnode.next = self.top
 self.top = newnode

 def peek(self):
 if self.is_empty():
 print("Error peek: stack sedang kosong.")
 else:
 return self.top.data

 def pop(self):
 if self.is_empty():
 print("Error pop: stack sudah kosong sebelumnya.")
 else:
 output = self.top.data
 temp = self.top
 self.top = self.top.next
 del temp
 return output

 def get_size(self):
 temp = self.top
 size = 0
 while temp != None:
 size += 1
 temp = temp.next
 return size

 def print_stack(self):
 temp = self.top
 while temp != None:
 print(temp.data)
 temp = temp.next

 # print linked list
 def print_storage(self):
 print("top -> ", end="")
 temp = self.top
 while temp != None:
 print(temp.data, end=" -> ")
 temp = temp.next
 print("None")

 def get_digraph_stack(self):

 new_digraph = gv.Digraph()
 # gambar akan terdiri dari satu tabel saja, satu kolom,
 # dan tiap baris adalah tiap elemen di stack
 tabel_besar = ""
 tabel_besar += "<"
 tabel_besar += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\"
 temp = self.top
 if temp == None:
 tabel_besar += "<TR><TD>"
 tabel_besar += "(Stack sedang kosong; tidak ada data sama sekali.)
 tabel_besar += "</TD></TR>"
 while temp != None:
 tabel_besar += "<TR><TD>"
 tabel_besar += str(temp.data)
 tabel_besar += "</TD></TR>"
 temp = temp.next
 # penutup tabel
 tabel_besar += "</TABLE>"
 tabel_besar += ">"
 new_digraph.node("SLStack", shape="none", label=tabel_besar)
 return new_digraph

 # copas dari modul linked list, tapi head ganti jadi top
 def get_digraph_storage(self):
 # Buat digraph baru yang sifatnya dari kiri ke kanan
 new_digraph = gv.Digraph(graph_attr={"rankdir": "LR"})

 # Pointer untuk menunjuk ke tiap node, mulai dari node pertama
 # (akan dilakukan traversal)
 current = self.top

 # Untuk menghitung node ke-sekian untuk nama node di Graphviz,
 # sehingga top menunjuk ke node0, lalu node0 menunjuk ke node1, dst
 counter = 0

 # Memperoleh alamat yang sedang disimpan di top
 # - asumsi awal: tidak ada alamat (None)
 next_id = None
 next_name = "node0" # ini nanti untuk nama node berikutnya di Graphviz
 # - kalau ternyata ada alamat...
 if current != None:
 # maka simpan alamat tersebut
 next_id = hex(id(current))
 # kita buat lebih spesifik untuk node berikutnya, tunjuk ke port i
 next_name = "node0:id"

 # Label (tabel) untuk pointer top
 # - pembuka tabel
 str_label = "<"
 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">"
 # - baris top
 str_label += "<TR><TD>top</TD></TR>"
 # - baris alamat (sekalian membuat port namanya "contents")
 str_label += "<TR><TD PORT=\"contents\">" + str(next_id) + "</TD></TR>
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node top, membuat edge dari top ke node berikutnya
 new_digraph.node("top", shape="none", label=str_label)
 new_digraph.edge("top:contents", next_name)
 # dari port "contents" ke node berikutnya, yang namanya next_name

 # Selama node yang ditunjuk bukan None, buatlah node nya di Graphviz,
 # lalu lanjut ke node selanjutnya (ini traversal)
 while current != None:
 # Alamat yang tersimpan pada current.next
 # - asumsi awal: tidak ada alamat; current adalah node terakhir
 next_id = None
 # - kalau ternyata ada alamat...
 if current.next != None:
 # maka simpan alamat tersebut
 next_id = hex(id(current.next))

 # Persiapan label (tabel) untuk node
 # - pembuka tabel
 str_label = "<"
 str_label += "<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0
 # - baris tulisan "data", "next"
 str_label += "<TR><TD>data</TD><TD>next</TD></TR>"
 # - baris untuk isi data dan isi next
 str_label += "<TR>"
 str_label += "<TD>" + str(current.data) + "</TD>"
 str_label += "<TD PORT=\"next\">" + str(next_id) + "</TD>"
 str_label += "</TR>"
 # - baris tulisan "alamat node", merentang dua kolom
 str_label += "<TR><TD COLSPAN=\"2\">alamat node</TD></TR>"
 # - baris untuk isi alamat node, merentang dua kolom
 str_label += "<TR>"
 str_label += "<TD PORT=\"id\" COLSPAN=\"2\">"
 str_label += str(hex(id(current)))
 str_label += "</TD>"
 str_label += "</TR>"
 # - penutup tabel
 str_label += "</TABLE>"
 str_label += ">"

 # Membuat node baru di Graphviz dengan label (tabel) tersebut
 new_digraph.node("node" + str(counter), shape="none", label = str_

 # Menentukan nama dua port yang bakal disambung dengan edge,
 # yaitu (node saat ini):next disambung ke node(berikutnya):id
 # yaitu bagian "next" disambung ke bagian alamat di node berikutny
 nama_node_next = "node" + str(counter) + ":next"
 if current.next != None:
 nama_alamat_node_berikutnya = "node" + str(counter+1) + ":id"
 # atau ke node(berikutnya) saja tanpa id kalau itu ternyata None,
 # karena None tidak akan memiliki port id
 else:
 nama_alamat_node_berikutnya = "node" + str(counter+1)

 # Menyambung keduanya
 new_digraph.edge(nama_node_next, nama_alamat_node_berikutnya)

top -> None

xyz
pqrs
ijk
fg
abc

top -> xyz -> pqrs -> ijk -> fg -> abc -> None

xyz
pqrs
ijk
fg

abc

xyz
pqrs

 # Lanjut ke node selanjutnya
 current = current.next
 counter += 1
 # Kalau sudah keluar loop, artinya current menunjuk ke None
 # Berarti tinggal membuat "node" terakhir berisi tulisan None
 # (karena sambungannya sudah dibuat di dalam loop, tinggal node nya)
 new_digraph.node("node" + str(counter), shape="none", label="None")

 # Digraph sudah jadi
 return new_digraph

slstack = SLStack()
slstack.print_storage()

slstack.push("abc")
slstack.push("fg")
slstack.push("ijk")
slstack.push("pqrs")
slstack.push("xyz")

slstack.print_stack()

slstack.print_storage()

display(slstack.get_digraph_stack())

print(slstack.pop())
print(slstack.pop())
print(slstack.pop())

ijk

fg
abc

top -> fg -> abc -> None

fg
abc

['k', 'e', 't', 'a', 'm']

slstack.print_stack()

slstack.print_storage()

display(slstack.get_digraph_stack())

Contoh sederhana: reverse suatu list/array

def reverse_array_arraystack(array_old):
 array = array_old.copy()

 # memeriksa tipe data dari elemen pertama
 tipe_data = type(array[0])
 # khusus array, bisa juga menggunakan array.dtype

 arraystack = ArrayStack(tipe_data, len(array))
 for i in range(len(array)):
 arraystack.push(array[i])
 for i in range(len(array)):
 array[i] = arraystack.pop()
 return array

list1 = ["m", "a", "t", "e", "k"]
list2 = reverse_array_arraystack(list1)
print(list2)

def reverse_array_slstack(array_old):
 array = array_old.copy()
 slstack = SLStack()
 for i in range(len(array)):
 slstack.push(array[i])
 for i in range(len(array)):
 array[i] = slstack.pop()
 return array

array1 = np.array(["m", "a", "t", "e", "k"])
array2 = reverse_array_slstack(array1)

['k' 'e' 't' 'a' 'm']

(TODO) Notasi prefix, infix, dan postfix

Notasi prefix, infix, dan postfix adalah tiga jenis notasi (cara penulisan) untuk menuliskan operasi aritmetika

seperti penjumlahan, perkalian, dan sebagainya.

Misalnya, kita bisa menuliskan penjumlahan 3 + 5 , di mana dua angka, 3 dan 5, dioperasikan oleh suatu

“operator” yaitu + (plus). Perhatikan bahwa operator berada di tengah, di antara kedua angka. Penulisan

seperti ini disebut notasi infix, dan inilah penulisan yang biasa kita kenal.

Ada juga cara penulisan di mana operator ditempatkan sebelum kedua angka, disebut notasi prefix, seperti

berikut: + 3 5

Walaupun terlihat agak aneh, kita bisa saja mendefinisikan fungsi seperti pseuducode berikut:

Kemudian penggunaannya adalah add(3, 5) , secara tidak langsung menggunakan notasi prefix :)

Selain prefix untuk di awal dan infix untuk di tengah, kita juga bisa menempatkan operator setelah kedua

angka, disebut notasi postfix. Contohnya: 3 5 +

Notasi postfix sebenarnya tidak terlalu asing, karena misalnya untuk menuliskan faktorial itu biasanya

menggunakan tanda seru setelah angkanya, lagi-lagi secara tidak langsung menggunakan notasi postfix,

seperti: 4!

Salah satu keuntungan menggunakan notasi prefix maupun postfix adalah bisa menghilangkan kurung tanpa

menyebabkan ambigu. Contohnya, dalam notasi infix kita bisa menuliskan 5 * (6 + 7) agar penjumlahan

dilakukan terlebih dahulu. Sedangkan, notasi prefix maupun postfix dijamin tidak membutuhkan kurung:

Prefix: * 5 + 6 7
Postfix: 6 7 + 5 *

Stack bisa sangat membantu untuk mengubah antara notasi prefix, infix, dan postfix.

Sebelum membahas konversi antara notasi prefix, infix, dan postfix, kita perlu membahas sebentar mengenai

“tokenisasi” (tokenization), yaitu proses “memecah” suatu string yang utuh menjadi “bagian-bagiannya”.

Misalnya, kalau kita punya notasi infix dalam string "3 + 5" , kita bisa melakukan tokenization untuk

memecahnya menjadi ["3", "+", "5"] .

Cara mudah untuk melakukan tokenisasi, bisa dengan sekedar menganggap tiap “bagian” atau tiap “token”

terpisahkan oleh spasi, sehingga bisa di-split begitu saja:

print(array2)

function add(x, y)
 return x+y
endfunction

Tokenisasi

def tokenize(string_utuh):
 hasil = string_utuh.split(" ") # string berisi satu spasi
 return hasil

['3', '+', '5']

Agar cara mudah ini berhasil (terutama untuk notasi infix), bahkan antara kurung buka/tutup juga harus

diberi spasi, ya!

['5', '*', '(', '6', '+', '7', ')']

Sebelumnya, telah disebutkan bahwa salah satu keuntungan notasi prefix maupun postfix dibandingkan

notasi infix adalah penulisan yang tidak ambigu tanpa diperlukannya kurung. Agar bisa mengubah notasi

infix menjadi notasi prefix ataupun notasi postfix, tentunya kita harus bisa membaca notasi infix secara tidak

ambigu. Artinya, kita harus kenal dengan aturan urutan pengoperasian.

Urusan urutan pengoperasian terbagi menjadi dua:

Precedence, semacam tingkatan prioritas antara operasi yang berbeda, yang mana yang dilakukan

duluan (apalagi kalau tidak ada tanda kurung)

Associativity, urutan pengoperasian antara dua operasi yang precedence nya sama, apakah dari kiri ke

kanan atau kanan ke kiri

Misalkan ada penulisan notasi infix: 9 + 8 * 7

Tentunya perkalian dilakukan terlebih dahulu, barulah penjumlahan. Artinya, perkalian memiliki higher

precedence (atau precedence yang lebih tinggi) daripada penjumlahan; bisa juga dikatakan, penjumlahan

memiliki lower precedence (atau precedence yang lebih rendah) daripada perkalian.

Sedangkan, misal ada penulisan notasi infix: 8 / 4 * 2 dan 8 * 4 / 2

Keduanya dilakukan dari kiri ke kanan. Artinya:

Tidak ada prioritas yang lebih utama antara pembagian maupun perkalian, sehingga keduanya

memiliki equal precedence (atau precedence yang sama).

Associativity dari pembagian maupun perkalian bersifat left-to-right.

Precedence dan associativity dari beberapa operator bisa didata:

Precedence Operator Associativity

3 ^ right-to-left

2 * / left-to-right

1 + - left-to-right

Perhatikan:

Perpangkatan bersifat right-to-left karena .

Pembagian maupun pengurangan bersifat left-to-right karena

print(tokenize("3 + 5"))

print(tokenize("5 * (6 + 7)"))

Precedence dan associativity

a
bc = a

(bc)

 dan

.

Kebetulan, perkalian maupun penjumlahan memiliki sifat asosiatif, yaitu

sehingga perkalian maupun penjumlahan sebenarnya bersifat left-to-right maupun right-to-left

sekaligus, yaitu

Namun, untuk mempermudah klasifikasi, kita bisa mengkategorikan perkalian dan penjumlahan

bersifat left-to-right.

(TODO) Urusan notasi prefix, infix, dan postfix dengan stack

Setelah tokenisasi, berikut langkah mengubah notasi infix menjadi postfix.

Siapkan suatu stack kosong, serta tempat (misal string kosong) untuk menyimpan hasil infix. Lalu, scanning

(melihat satu-per-satu) tiap token dari kiri ke kanan, dan ikuti ketentuan berikut:

1. Apabila token adalah operand/angka, langsung tambahkan ke hasil infix

2. Apabila stack kosong, atau apabila elemen teratas pada stack adalah kurung kiri, maka push token

tersebut ke dalam stack

3. Apabila token adalah kurung kiri yaitu “(”, push ke dalam stack

4. Apabila token adalah kurung kanan yaitu “)”, lakukan while loop: lakukan pop pada stack, masukkan

hasil pop tersebut ke hasil infix, hentikan while loop apabila hasil pop tersebut adalah kurung kiri.

5. Apabila token memiliki precedence yang lebih tinggi daripada elemen teratas pada stack, maka push

token tersebut ke dalam stack.

6. Apabila token memiliki precedence yang lebih rendah daripada elemen teratas pada stack, lakukan

langkah berikut: lakukan pop pada stack, lalu masukkan hasil pop tersebut ke hasil infix.

7. Apabila token memiliki precedence yang setara dengan elemen teratas pada stack, perhatikan

associativity dari operator tersebut, lalu:

a. Apabila untuk operator tersebut bersifat left-to-right: lakukan pop pada stack, masukkan hasil

pop ke hasil infix, lalu push token

b. Sedangkan apabila bersifat right-to-left: push token tersebut ke dalam stack

Setelah suatu token teratasi, tentunya langsung lanjut melihat token berikutnya. Apabila semua token

sudah teratasi sedangkan stack belum kosong, maka ulangi sampai stack kosong: lakukan pop, masukkan

hasil pop ke hasil infix.

a/b/c = (a/b)/c

a − b − c = (a − b) − c

(a ∗ b) ∗ c = a ∗ (b ∗ c)

(a + b) + c = a + (b + c)

a ∗ b ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c)

a + b + c = (a + b) + c = a + (b + c)

Notasi infix menjadi postfix

Notasi infix menjadi prefix

Evaluasi notasi prefix

Evaluasi notasi postfix

Notasi postfix menjadi infix

Notasi prefix menjadi infix

Modul 5 Struktur Data: Queue dan berbagai
implementasinya

Di praktikum kali ini, kita akan membahas tentang struktur data queue serta berbagai “implementasi”nya

dalam Python (yaitu berbagai cara membuat struktur data queue di Python), baik menggunakan array

maupun linked list.

Queue itu sendiri adalah suatu struktur data dengan dua ujung, di mana data bisa dimasukkan dari salah

satu ujung tertentu (yang disebut rear) dan data bisa dikeluarkan dari ujung yang satunya lagi (yang disebut

front). Queue dikatakan menganut prinsip FIFO (First In First Out), karena data yang pertama masuk akan

menjadi data yang pertama keluar.

Kita akan menggunakan array dari numpy, sehingga perlu melakukan import:

Implementasi (linear) queue dengan array

import numpy as np

class ArrayLinQueue:
 def __init__(self, dtype, array_max):
 self.dtype = dtype
 self.array_max = array_max
 self.array = np.empty(array_max, dtype=dtype)
 self.front = -1
 self.rear = -1

 def get_size(self):
 size = (self.rear - self.front) + 1
 return size

 def get_capacity_array(self):
 return self.array_max

 def get_capacity_queue(self):
 if self.front == -1:
 capacity_queue = self.array_max
 else:
 capacity_queue = self.array_max - self.front
 return capacity_queue

 def is_empty(self):
 if self.front == -1:
 return True
 else:

Lab Komputasi Program Studi Matematika

https://aslab-math-ui.github.io/modul-prak/

 return False

 def is_full(self):
 if self.rear == self.array_max - 1:
 return True
 else:
 return False

 def enqueue(self, newdata):
 if self.is_full():
 print("Error enqueue: queue sudah penuh sebelumnya")
 elif self.front == -1:
 self.front += 1
 self.rear += 1
 self.array[self.rear] = newdata
 else:
 self.rear += 1
 self.array[self.rear] = newdata

 def peek(self):
 if self.is_empty():
 print("Error peek: queue sedang kosong")
 else:
 return self.array[self.front]

 def dequeue(self):
 if self.is_empty():
 print("Error dequeue: queue sudah kosong sebelumnya")
 return None
 elif (self.get_size() == 1):
 # Jika di queue hanya ada satu elemen, dan ingin di-dequeue,
 # maka queue akan kosong setelah itu
 output = self.array[self.front]
 self.front = -1
 self.rear = -1
 return output
 else:
 output = self.array[self.front]
 self.front += 1
 return output

 def print_storage(self):
 print(self.array)

 def print_queue(self):
 print("front : ", end="")
 if self.is_empty():
 print("(tidak ada data) : rear")
 else:
 for i in range(self.front, self.rear): # i = front, ..., rear-1
 print(self.array[i], end=" | ")
 print(self.array[self.rear], end="") # untuk i = rear
 print(" : rear")

arraylinqueue = ArrayLinQueue(int, 5)

front : (tidak ada data) : rear

[0 4602678819172646912 4607182418800017408
 4609434218613702656 4611686018427387904]

front : -18 | 67 | 32 : rear

[-18 67 32
 4609434218613702656 4611686018427387904]

0
2

front : -18 | 67 | 32 | -29 : rear

[-18 67 32
 -29 4611686018427387904]

0
3

-18

arraylinqueue.print_queue()

arraylinqueue.print_storage()

arraylinqueue.enqueue(-18)
arraylinqueue.enqueue(67)
arraylinqueue.enqueue(32)

arraylinqueue.print_queue()

arraylinqueue.print_storage()

print(arraylinqueue.front)
print(arraylinqueue.rear)

arraylinqueue.enqueue(-29)

arraylinqueue.print_queue()

arraylinqueue.print_storage()

print(arraylinqueue.front)
print(arraylinqueue.rear)

print(arraylinqueue.peek())

arraylinqueue.print_queue()

front : -18 | 67 | 32 | -29 : rear

-18

front : 67 | 32 | -29 : rear

[-18 67 32
 -29 4611686018427387904]

1
3

67

front : 32 | -29 : rear

32
-29

front : (tidak ada data) : rear

-1
-1

Error dequeue: queue sudah kosong sebelumnya
None

nilai = arraylinqueue.dequeue()
print(nilai)

arraylinqueue.print_queue()

arraylinqueue.print_storage()

print(arraylinqueue.front)
print(arraylinqueue.rear)

print(arraylinqueue.dequeue())

arraylinqueue.print_queue()

print(arraylinqueue.dequeue())
print(arraylinqueue.dequeue())

arraylinqueue.print_queue()

print(arraylinqueue.front)
print(arraylinqueue.rear)

print(arraylinqueue.dequeue())

front : -25 | 13 | 48 | -87 | 38 : rear

[-25 13 48 -87 38]

True

0
4

Error enqueue: queue sudah penuh sebelumnya

-25
13

front : 48 | -87 | 38 : rear

[-25 13 48 -87 38]

2
4

Error enqueue: queue sudah penuh sebelumnya

arraylinqueue.enqueue(-25)
arraylinqueue.enqueue(13)
arraylinqueue.enqueue(48)
arraylinqueue.enqueue(-87)
arraylinqueue.enqueue(38)

arraylinqueue.print_queue()

arraylinqueue.print_storage()

print(arraylinqueue.is_full())

print(arraylinqueue.front)
print(arraylinqueue.rear)

arraylinqueue.enqueue(-53)

print(arraylinqueue.dequeue())
print(arraylinqueue.dequeue())

arraylinqueue.print_queue()

arraylinqueue.print_storage()

print(arraylinqueue.front)
print(arraylinqueue.rear)

arraylinqueue.enqueue(-53)

Implementasi circular queue dengan array

class ArrayCircQueue:
 def __init__(self, dtype, max):
 self.dtype = dtype
 self.max = max
 self.array = np.empty(max, dtype=dtype)
 self.front = -1
 self.rear = -1

 def is_empty(self):
 if self.front == -1:
 return True
 else:
 return False

 def is_full(self):
 if self.front == (self.rear + 1) % self.max:
 return True
 else:
 return False

 def get_size(self):
 if self.is_empty():
 size = 0
 elif self.front <= self.rear:
 size = (self.rear - self.front) + 1
 else:
 size = self.max - (self.front - self.rear - 1)
 return size

 def get_capacity(self):
 return self.max

 def enqueue(self, newdata):
 if self.is_full():
 print("Error enqueue: queue sudah penuh sebelumnya")
 elif self.front == -1:
 self.front += 1
 self.rear += 1
 self.array[self.rear] = newdata
 else:
 self.rear = (self.rear + 1) % self.max # hanya berbeda di sini
 self.array[self.rear] = newdata

 # Masih sama persis
 def peek(self):
 if self.is_empty():
 print("Error peek: queue sedang kosong")
 else:
 return self.array[self.front]

 def dequeue(self):
 if self.is_empty():
 print("Error dequeue: queue sudah kosong sebelumnya")
 return None

front : (tidak ada data) : rear

[4607182418800017408 4613374868287651840 4618441417868443648
 4622241330054037504 4625478292286210048]

front : 65 | -11 | 43 : rear

[65 -11 43
 4622241330054037504 4625478292286210048]

 elif (self.get_size() == 1):
 # Jika di queue hanya ada satu elemen, dan ingin di-dequeue,
 # maka queue akan kosong setelah itu
 output = self.array[self.front]
 self.front = -1
 self.rear = -1
 return output
 else:
 output = self.array[self.front]
 self.front = (self.front + 1) % self.max # hanya berbeda di sini
 return output

 def print_storage(self):
 print(self.array)

 def print_queue(self):
 print("front : ", end="")
 if self.is_empty():
 print("(tidak ada data) : rear")
 else:
 # i = front, ..., rear-1 (kurang lebih begitu)
 i = self.front
 while i != self.rear:
 print(self.array[i], end=" | ")
 i = (i + 1) % self.max
 # untuk i = rear
 print(self.array[self.rear], end="")
 print(" : rear")

arraycircqueue = ArrayCircQueue(int, 5)
arraycircqueue.print_queue()

arraycircqueue.print_storage()

arraycircqueue.enqueue(65)
arraycircqueue.enqueue(-11)
arraycircqueue.enqueue(43)

arraycircqueue.print_queue()

arraycircqueue.print_storage()

0
2

front : 65 | -11 | 43 | 97 | -12 : rear

Error enqueue: queue sudah penuh sebelumnya

[65 -11 43 97 -12]

0
4

65

front : 65 | -11 | 43 | 97 | -12 : rear

65

front : -11 | 43 | 97 | -12 : rear

[65 -11 43 97 -12]

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(97)
arraycircqueue.enqueue(-12)

arraycircqueue.print_queue()

arraycircqueue.enqueue(41)

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.peek())

arraycircqueue.print_queue()

print(arraycircqueue.dequeue())

arraycircqueue.print_queue()

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

1
4

-11
43

front : 97 | -12 : rear

3
4

[65 -11 43 97 -12]

front : 97 | -12 | -74 : rear

[-74 -11 43 97 -12]

3
0

front : 97 | -12 | -74 | 19 : rear

[-74 19 43 97 -12]

print(arraycircqueue.dequeue())
print(arraycircqueue.dequeue())

arraycircqueue.print_queue()

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.print_storage()

arraycircqueue.enqueue(-74)

arraycircqueue.print_queue()

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(19)

arraycircqueue.print_queue()

arraycircqueue.print_storage()

3
1

front : 97 | -12 | -74 | 19 | 85 : rear

[-74 19 85 97 -12]

3
2

Error enqueue: queue sudah penuh sebelumnya

97

front : -12 | -74 | 19 | 85 : rear

[-74 19 85 97 -12]

4
2

-12

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(85)

arraycircqueue.print_queue()

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(-31)

print(arraycircqueue.dequeue())

arraycircqueue.print_queue()

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.dequeue())

arraycircqueue.print_queue()

front : -74 | 19 | 85 : rear

[-74 19 85 97 -12]

0
2

front : -74 | 19 | 85 | 27 : rear

[-74 19 85 27 -12]

0
3

-74

front : 19 | 85 | 27 : rear

[-74 19 85 27 -12]

1
3

Implementasi (linear) queue dengan linked list

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

arraycircqueue.enqueue(27)

arraycircqueue.print_queue()

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

print(arraycircqueue.dequeue())

arraycircqueue.print_queue()

arraycircqueue.print_storage()

print(arraycircqueue.front)
print(arraycircqueue.rear)

class SLNode:
 def __init__(self, data, next=None):

 self.data = data
 self.next = next

class SLLinQueue:
 def __init__(self):
 # head=front, tail=rear
 self.front = None
 self.rear = None

 def is_empty(self):
 if self.front == None:
 return True
 else:
 return False

 def get_size(self):
 size = 0
 temp = self.front
 while (temp != None):
 size += 1
 temp = temp.next
 return size

 # insert di akhir linked list
 def enqueue(self, newdata):
 newnode = SLNode(newdata)
 if self.is_empty():
 self.front = newnode
 self.rear = newnode
 else:
 self.rear.next = newnode
 self.rear = newnode

 def peek(self):
 if self.is_empty():
 print("Error peek: queue sedang kosong")
 return None
 else:
 return self.front.data

 # hapus di awal linked list
 def dequeue(self):
 if self.is_empty():
 print("Error dequeue: queue sudah kosong sebelumnya")
 return None
 else:
 output = self.front.data
 temp = self.front
 self.front = self.front.next
 del temp
 return output

 def print_queue(self):
 print("front : ", end="")
 if self.is_empty():
 print("(tidak ada data) : rear")

front : (tidak ada data) : rear
front -> None <- rear

front : 10 : rear
front -> 10 <- rear

front : 10 | 98 : rear
front -> 10 -> 98 <- rear

front : 10 | 98 | -43 : rear
front -> 10 -> 98 -> -43 <- rear

 else:
 temp = self.front
 while temp != None:
 if temp.next != None:
 print(temp.data, end = " | ")
 else:
 print(temp.data, end="")
 temp = temp.next
 print(" : rear")

 def print_storage(self):
 print("front -> ", end="")
 if self.is_empty():
 print("None <- rear")
 else:
 temp = self.front
 while temp != None:
 if temp.next != None:
 print(temp.data, end = " -> ")
 else:
 print(temp.data, end = " <- ")
 temp = temp.next
 print("rear")

sllinqueue = SLLinQueue()
sllinqueue.print_queue()
sllinqueue.print_storage()

sllinqueue.enqueue(10)
sllinqueue.print_queue()
sllinqueue.print_storage()

sllinqueue.enqueue(98)
sllinqueue.print_queue()
sllinqueue.print_storage()

sllinqueue.enqueue(-43)
sllinqueue.print_queue()
sllinqueue.print_storage()

print(sllinqueue.peek())

10

front : 10 | 98 | -43 : rear
front -> 10 -> 98 -> -43 <- rear

10

front : 98 | -43 : rear
front -> 98 -> -43 <- rear

Implementasi circular queue dengan (circular) linked list

sllinqueue.print_queue()
sllinqueue.print_storage()

print(sllinqueue.dequeue())

sllinqueue.print_queue()
sllinqueue.print_storage()

class SLCircQueue:
 def __init__(self):
 # head=front, tail=rear
 self.front = None
 self.rear = None

 def is_empty(self):
 if self.front == None:
 return True
 else:
 return False

 def get_size(self):
 size = 0
 temp = self.front
 if temp == None:
 return size
 else:
 size += 1
 temp = temp.next
 while (temp != self.front):
 size += 1
 temp = temp.next
 return size

 def enqueue(self, newdata):
 newnode = SLNode(newdata)
 if self.is_empty():
 self.front = newnode
 self.rear = newnode
 newnode.next = newnode
 else:
 self.rear.next = newnode
 self.rear = newnode

 newnode.next = self.front

 # masih sama persis
 def peek(self):
 if self.is_empty():
 print("Error peek: queue sedang kosong")
 return None
 else:
 return self.front.data

 def dequeue(self):
 if self.is_empty():
 print("Error dequeue: queue sudah kosong sebelumnya")
 return None
 elif (self.front == self.rear): # sama saja self.get_size() == 1
 output = self.front.data
 del self.front
 self.front = None
 self.rear = None
 return output
 else:
 output = self.front.data
 temp = self.front
 self.front = self.front.next
 del temp
 self.rear.next = self.front
 return output

 def print_queue(self):
 print("front : ", end="")
 if self.is_empty():
 print("(tidak ada data) : rear")
 else:
 temp = self.front
 while temp.next != self.front:
 print(temp.data, end = " | ")
 temp = temp.next
 print(temp.data, end="")
 print(" : rear")

 def print_storage(self):
 print("front -> ", end="")
 if self.is_empty():
 print("None (<- rear)")
 else:
 temp = self.front
 while temp.next != self.front:
 print(temp.data, end = " -> ")
 temp = temp.next
 print(temp.data, end = "")
 print(" (<- rear) -> front")

slcircqueue = SLCircQueue()
slcircqueue.print_queue()
slcircqueue.print_storage()

front : (tidak ada data) : rear
front -> None (<- rear)

front : -91 : rear
front -> -91 (<- rear) -> front

front : -91 | 14 : rear
front -> -91 -> 14 (<- rear) -> front

front : -91 | 14 | 30 : rear
front -> -91 -> 14 -> 30 (<- rear) -> front

-91

front : -91 | 14 | 30 : rear
front -> -91 -> 14 -> 30 (<- rear) -> front

-91

front : 14 | 30 : rear
front -> 14 -> 30 (<- rear) -> front

(TODO) Pengayaan: Deque atau double-ended queue (DEQ)

slcircqueue.enqueue(-91)
slcircqueue.print_queue()
slcircqueue.print_storage()

slcircqueue.enqueue(14)
slcircqueue.print_queue()
slcircqueue.print_storage()

slcircqueue.enqueue(30)
slcircqueue.print_queue()
slcircqueue.print_storage()

slcircqueue.peek()

slcircqueue.print_queue()
slcircqueue.print_storage()

print(slcircqueue.dequeue())

slcircqueue.print_queue()
slcircqueue.print_storage()

Modul 6 Struktur Data: Binary Tree, Binary Search Tree (BST)

Implementasi binary tree

import numpy as np
import graphviz as gv

Binary Tree dengan array

class ArrayBintree:
 def __init__(self, dtype, height, emptydata=-9999):
 self.dtype = dtype
 self.height = height
 self.emptydata = emptydata
 self.array_size = 2**(height+1) - 1
 self.array = np.empty(self.array_size, dtype=dtype)
 for i in range(self.array_size):
 self.array[i] = emptydata

 def get_root(self):
 root_data = self.array[0]
 if root_data == self.emptydata:
 return None
 else:
 return root_data

 def set_root(self, newdata):
 self.array[0] = newdata

 def get_data(self, node_idx):
 if node_idx < self.array_size:
 return self.array[node_idx]
 else:
 print("Error get_data: indeks di luar ukuran tree")
 return None

 def set_data(self, node_idx, newdata):
 if node_idx < self.array_size:
 self.array[node_idx] = newdata
 else:
 print("Error set_data: indeks di luar ukuran tree")

 def get_left_child_idx(self, node_idx):
 left_idx = 2*node_idx + 1
 if left_idx < self.array_size:

Lab Komputasi Program Studi Matematika

https://aslab-math-ui.github.io/modul-prak/

 return left_idx
 else:
 return -1

 def get_left_child(self, node_idx):
 left_idx = self.get_left_child_idx(node_idx)
 if left_idx != -1:
 data = self.array[left_idx]
 if data != self.emptydata:
 return data
 else:
 return None
 else:
 return None

 def get_right_child_idx(self, node_idx):
 right_idx = 2*node_idx + 2
 if right_idx < self.array_size:
 return right_idx
 else:
 return -1

 def get_right_child(self, node_idx):
 right_idx = self.get_right_child_idx(node_idx)
 if right_idx != -1:
 data = self.array[right_idx]
 if data != self.emptydata:
 return data
 else:
 return None
 else:
 return None

 def get_parent_idx(self, node_idx):
 if node_idx == 0:
 return -1
 idx = int(np.floor((node_idx - 1)/2))
 return idx

 # preorder: tengah, kiri, kanan
 def get_preorder(self, current=0, result=None):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = []

 # tengah
 current_data = self.array[current]
 if current_data != self.emptydata:
 result.append(current_data)

 # kiri
 left_idx = self.get_left_child_idx(current)
 if left_idx != -1:
 self.get_preorder(current=left_idx, result=result)

 # kanan

 right_idx = self.get_right_child_idx(current)
 if right_idx != -1:
 self.get_preorder(current=right_idx, result=result)

 if is_starting_node:
 return result

 # inorder: kiri, tengah, kanan
 def get_inorder(self, current=0, result=None):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = []

 # kiri
 left_idx = self.get_left_child_idx(current)
 if left_idx != -1:
 self.get_inorder(current=left_idx, result=result)

 # tengah
 current_data = self.array[current]
 if current_data != self.emptydata:
 result.append(current_data)

 # kanan
 right_idx = self.get_right_child_idx(current)
 if right_idx != -1:
 self.get_inorder(current=right_idx, result=result)

 if is_starting_node:
 return result

 # postorder: kiri, kanan, tengah
 def get_postorder(self, current=0, result=None):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = []

 # kiri
 left_idx = self.get_left_child_idx(current)
 if left_idx != -1:
 self.get_postorder(current=left_idx, result=result)

 # kanan
 right_idx = self.get_right_child_idx(current)
 if right_idx != -1:
 self.get_postorder(current=right_idx, result=result)

 # tengah
 current_data = self.array[current]
 if current_data != self.emptydata:
 result.append(current_data)

 if is_starting_node:
 return result

[-9999 -9999 -9999 -9999 -9999 -9999 -9999]

[10 -9999 -9999 -9999 -9999 -9999 -9999]

10

NULL NULL

[10 5 -9999 -9999 -9999 -9999 -9999]

 def get_digraph_simple(self):
 digraph = gv.Digraph()
 for idx in range(self.array_size):
 data = self.array[idx]
 if data != self.emptydata:
 digraph.node("node" + str(idx), label=str(data))
 left_idx = self.get_left_child_idx(idx)
 right_idx = self.get_right_child_idx(idx)
 if left_idx != -1:
 digraph.edge("node" + str(idx), "node" + str(left_idx))
 if self.array[left_idx] == self.emptydata:
 digraph.node("node" + str(left_idx), label="NULL", sha
 if right_idx != -1:
 digraph.edge("node" + str(idx), "node" + str(right_idx))
 if self.array[right_idx] == self.emptydata:
 digraph.node("node" + str(right_idx), label="NULL", sh
 return digraph

arraybintree = ArrayBintree(int, 2)

print(arraybintree.array)

arraybintree.set_root(10)

print(arraybintree.array)

display(arraybintree.get_digraph_simple())

arraybintree.set_data(
 arraybintree.get_left_child_idx(0),
 5
)

print(arraybintree.array)

display(arraybintree.get_digraph_simple())

10

5 NULL

NULL NULL

[10 5 19 -9999 -9999 -9999 -9999]

10

5 19

NULL NULL NULL NULL

[10 5 19 -9999 37 -9999 -9999]

arraybintree.set_data(
 arraybintree.get_right_child_idx(0),
 19
)

print(arraybintree.array)

display(arraybintree.get_digraph_simple())

arraybintree.set_data(
 arraybintree.get_right_child_idx(arraybintree.get_left_child_idx(0)),
 37
)

print(arraybintree.array)

display(arraybintree.get_digraph_simple())

10

5 19

NULL 37 NULL NULL

37

[10 5 19 -9999 37 98 62]

10

5 19

NULL 37 98 62

[10 5 19 25 37 98 62]

arraybintree.get_data(
 arraybintree.get_right_child_idx(arraybintree.get_left_child_idx(0))
)

arraybintree.array[5] = 98
arraybintree.array[6] = 62

print(arraybintree.array)

display(arraybintree.get_digraph_simple())

arraybintree.array[3] = 25

print(arraybintree.array)

display(arraybintree.get_digraph_simple())

10

5 19

25 37 98 62

[10, 5, 25, 37, 19, 98, 62]

[25, 5, 37, 10, 98, 19, 62]

[25, 37, 5, 98, 62, 19, 10]

arraybintree.get_preorder()

arraybintree.get_inorder()

arraybintree.get_postorder()

Binary Tree dengan pointer (linked binary tree)

class BintreeNode:
 def __init__(self, data, left=None, right=None):
 self.data = data
 self.left = left
 self.right = right

class LinkedBintree:
 def __init__(self):
 self.root = None

 def is_empty(self):
 if self.root == None:
 return True
 else:
 return False

 def get_root_data(self):
 if self.is_empty():
 print("Error get_root_data: tree sedang kosong")
 return None
 else:
 return self.root.data

 def set_root_data(self, newdata):
 if self.is_empty():
 self.root = BintreeNode(newdata)
 else:
 self.root.data = newdata

 # preorder: tengah, kiri, kanan
 def get_preorder(self, current=None, result=None, get_addresses=False):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = []
 current = self.root

 if current != None:
 # tengah
 if (not get_addresses):
 result.append(current.data)
 else:
 result.append(current)

 # kiri
 if current.left != None:
 self.get_preorder(current.left, result=result)

 # kanan
 if current.right != None:
 self.get_preorder(current.right, result=result)

 if is_starting_node:
 return result

 # inorder: kiri, tengah, kanan
 def get_inorder(self, current=None, result=None, get_addresses=False):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = []
 current = self.root

 if current != None:
 # kiri
 if current.left != None:
 self.get_inorder(current.left, result=result)

 # tengah
 if (not get_addresses):
 result.append(current.data)
 else:
 result.append(current)

 # kanan
 if current.right != None:
 self.get_inorder(current.right, result=result)

 if is_starting_node:

 return result

 # postorder: kiri, kanan, tengah
 def get_postorder(self, current=None, result=None, get_addresses=False):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = []
 current = self.root

 if current != None:
 # kiri
 if current.left != None:
 self.get_postorder(current.left, result=result)

 # kanan
 if current.right != None:
 self.get_postorder(current.right, result=result)

 # tengah
 if (not get_addresses):
 result.append(current.data)
 else:
 result.append(current)

 if is_starting_node:
 return result

 # berdasarkan algoritma preorder traversal :D
 def get_digraph_simple(self, current=None, node_name=None, result=None):
 is_starting_node = False
 if result == None:
 is_starting_node = True
 result = gv.Digraph()
 current = self.root
 node_name = "root"

 if current != None:
 # tengah
 result.node(node_name, label=str(current.data))

 # kiri
 left_name = node_name + "->left"
 result.edge(node_name, left_name)
 self.get_digraph_simple(
 current=current.left, node_name=left_name, result=result
)

 # kanan
 right_name = node_name + "->right"
 self.get_digraph_simple(
 current=current.right, node_name=right_name, result=result
)
 result.edge(node_name, right_name)
 else:
 result.node(node_name, label="NULL", shape="none")

None

<__main__.BintreeNode object at 0x10ccbd060>

26

26

89 54

NULL NULL NULL NULL

 if is_starting_node:
 return result

linkedbintree = LinkedBintree()

print(linkedbintree.root)

linkedbintree.root = BintreeNode(26)

print(linkedbintree.root)

print(linkedbintree.root.data)

linkedbintree.root.left = BintreeNode(89)
linkedbintree.root.right = BintreeNode(54)

display(linkedbintree.get_digraph_simple())

linkedbintree.root.left.right = BintreeNode(43)

display(linkedbintree.get_digraph_simple())

26

89 54

NULL 43

NULL NULL

NULL NULL

43

26

89 54

NULL 43

NULL NULL

NULL 11

72 35

NULL NULL NULL NULL

print(linkedbintree.root.left.right.data)

linkedbintree.root.right.right = BintreeNode(11)
linkedbintree.root.right.right.left = BintreeNode(72)
linkedbintree.root.right.right.right = BintreeNode(35)

display(linkedbintree.get_digraph_simple())

26

89 54

NULL 43

90 NULL

NULL 16

NULL NULL

NULL 11

72 35

NULL NULL NULL NULL

[26, 89, 43, 90, 16, 54, 11, 72, 35]

[89, 90, 16, 43, 26, 54, 72, 11, 35]

[16, 90, 43, 89, 72, 35, 11, 54, 26]

Binary Search Tree (BST) dengan pointer (linked BST)

Binary Search Tree (BST) adalah binary tree dengan beberapa sifat dan fitur tambahan. Sehingga, untuk

implementasi BST, kita cukup menambahkan beberapa method ke class binary tree yang sudah dibuat.

linkedbintree.root.left.right.left = BintreeNode(90)
linkedbintree.root.left.right.left.right = BintreeNode(16)

display(linkedbintree.get_digraph_simple())

linkedbintree.get_preorder()

linkedbintree.get_inorder()

linkedbintree.get_postorder()

Daripada mengetik ulang semua method yang sudah dibuat di class binary tree, kita bisa menerapkan

salah satu prinsip OOP yaitu inheritance, agar langsung mewariskan semua fitur yang sudah dibuat di

implementasi binary tree.

Karena lebih fleksibel (tidak ada keterbatasan ukuran), kita akan membuat BST dengan pointer (juga

disebut linked BST) saja, berarti meng-inherit dari class LinkedBintree .

(Membuat BST dengan array juga memungkinkan, meng-inherit dari class ArrayBintree , tetapi akan ada

beberapa pertimbangan tambahan, misalnya untuk memastikan posisi node yang di-insert tidak melebihi

kapastias array.)

class LinkedBST(LinkedBintree):
 def __init__(self):
 # menggunakan __init__ dari parent class,
 # melalui super() yaitu parent class
 super().__init__()

 # semua method dari LinkedBintree otomatis sudah terdefinisi

 # cari elemen di BST
 def search(self, x):
 temp = self.root
 while (temp != None):
 if x == temp.data:
 return x
 elif x < temp.data:
 temp = temp.left
 else:
 temp = temp.right
 return None

 # insertion
 def insert(self, newdata):
 if self.root == None:
 self.root = BintreeNode(newdata)
 return
 temp = self.root
 while (temp != None):
 if newdata == temp.data:
 print("Error insert: data sudah ada di BST, yaitu", newdata)
 return
 elif newdata < temp.data:
 if temp.left == None:
 temp.left = BintreeNode(newdata)
 return
 else:
 temp = temp.left
 else: # newdata > temp.data
 if temp.right == None:
 temp.right = BintreeNode(newdata)
 return
 else:
 temp = temp.right

 # deletion
 def delete(self, x, inorder_pred=False):

 if self.is_empty():
 print("Error: BST kosong")
 return
 prev = self.root
 turn = ""
 if x < prev.data:
 if prev.left == None:
 print("Error delete: tidak ditemukan data yang bernilai", x)
 return
 else:
 temp = prev.left
 turn = "left"
 elif x > prev.data:
 if prev.right == None:
 print("Error delete: tidak ditemukan data yang bernilai", x)
 return
 else:
 temp = prev.right
 turn = "right"
 else:
 temp = prev

 while (temp != None):
 if temp.data == x:
 break
 elif x < temp.data:
 if temp.left == None:
 print("Error delete: tidak ditemukan data yang bernilai", x
 return
 else:
 prev = temp
 temp = temp.left
 turn = "left"
 else: # x > temp.data
 if temp.right == None:
 print("Error delete: tidak ditemukan data yang bernilai", x
 return
 else:
 prev = temp
 temp = temp.right
 turn = "right"

 # kasus 0 children
 if (temp.left == None) and (temp.right == None):
 if turn == "left":
 prev.left = None
 elif turn == "right":
 prev.right = None
 del temp
 return

 # kasus 1 child, di kiri
 elif (temp.left != None) and (temp.right == None):
 if turn == "left":
 prev.left = temp.left
 elif turn == "right":
 prev.right = temp.left

10

NULL NULL

 del temp
 return

 # kasus 1 child, di kanan
 elif (temp.left == None) and (temp.right != None):
 if turn == "left":
 prev.left = temp.right
 elif turn == "right":
 prev.right = temp.right
 del temp
 return

 # kasus 2 children
 elif inorder_pred: # metode inorder predecessor (left subtree)
 inorder_left = []
 self.get_inorder(current=temp.left, result=inorder_left)
 replacement = inorder_left[-1] # elemen terakhir
 self.delete(replacement, inorder_pred=inorder_pred)
 temp.data = replacement
 return
 else: # metode inorder successor (right subtree)
 inorder_right = []
 self.get_inorder(current=temp.right, result=inorder_right)
 replacement = inorder_right[0]
 self.delete(replacement, inorder_pred=inorder_pred)
 temp.data = replacement
 return

linkedbst = LinkedBST()

linkedbst.insert(10)

display(linkedbst.get_digraph_simple())

linkedbst.insert(27)

display(linkedbst.get_digraph_simple())

10

NULL 27

NULL NULL

10

5 27

NULL NULL NULL NULL

linkedbst.insert(5)

display(linkedbst.get_digraph_simple())

linkedbst.insert(8)

display(linkedbst.get_digraph_simple())

10

5 27

NULL 8

NULL NULL

NULL NULL

Error insert: data sudah ada di BST, yaitu 8

10

5 27

NULL 8

NULL NULL

NULL NULL

linkedbst.insert(8)

display(linkedbst.get_digraph_simple())

linkedbst.insert(16)

display(linkedbst.get_digraph_simple())

10

5 27

NULL 8

NULL NULL

16 NULL

NULL NULL

10

5 27

NULL 8

NULL NULL

16 38

NULL NULL NULL NULL

linkedbst.insert(38)

display(linkedbst.get_digraph_simple())

linkedbst.insert(3)

display(linkedbst.get_digraph_simple())

10

5 27

3 8

NULL NULL NULL NULL

16 38

NULL NULL NULL NULL

10

5 27

3 8

NULL NULL NULL 9

NULL NULL

16 38

NULL NULL NULL NULL

[10, 5, 3, 8, 9, 27, 16, 38]

[3, 5, 8, 9, 10, 16, 27, 38]

linkedbst.insert(9)

display(linkedbst.get_digraph_simple())

linkedbst.get_preorder()

linkedbst.get_inorder()

[3, 9, 8, 5, 16, 38, 27, 10]

Error delete: tidak ditemukan data yang bernilai 50

10

5 27

3 8

NULL NULL NULL 9

NULL NULL

16 38

NULL NULL NULL NULL

linkedbst.get_postorder()

linkedbst.delete(50)

display(linkedbst.get_digraph_simple())

linkedbst.delete(3)

display(linkedbst.get_digraph_simple())

10

5 27

NULL 8

NULL 9

NULL NULL

16 38

NULL NULL NULL NULL

10

5 27

NULL 9

NULL NULL

16 38

NULL NULL NULL NULL

linkedbst.delete(8)

display(linkedbst.get_digraph_simple())

linkedbst.delete(27)

display(linkedbst.get_digraph_simple())

10

5 38

NULL 9

NULL NULL

16 NULL

NULL NULL

16

5 38

NULL 9

NULL NULL

NULL NULL

linkedbst.delete(10)

display(linkedbst.get_digraph_simple())

linkedbst.delete(16, inorder_pred=True)

display(linkedbst.get_digraph_simple())

9

5 38

NULL NULL NULL NULL

(TODO) (Pengayaan) LinkedBintree dari preorder, inorder, dan/atau
postorder

Kita akan membuat LinkedBintree saja, karena height dari tree yang akan dibentuk tidak bisa ditentukan

sebelum tree selesai terbentuk, sedangkan pembuatan ArrayBintree melibatkan penentuan height di

awal-awal sebelum tree dibentuk.

Jika diberikan preorder dengan inorder, atau postorder dengan inorder, maka hanya ada satu binary tree yang

mungkin.

Namun, apabila diberikan preorder dengan postorder, maka binary tree yang dibentuk belum tentu unik.

Meskipun demikian, apabila ditambahkan syarat bahwa binary tree yang dibentuk harus bersifat complete,

maka binary tree yang dibentuk menjadi unik.

Oleh karena itu, untuk kasus diberikan preorder dengan postorder, ada algoritma biasa (tanpa syarat

tersebut) dan algoritma dengan syarat tersebut.

LinkedBintree dari preorder dan inorder

def linkedbintree_from_preorder_inorder(
 preorder, inorder, is_starting_node=True
):

 # Nanti di paling bawah tree kalau inorder sudah kosong,
 # tidak perlu buat node lagi; langsung return None (NULL)
 if len(inorder) == 0:
 return None

 # 1. Di antara semua elemen inorder, mana yang paling kiri di preorder?
 # Simpan index inorder nya
 selesai = False
 preorder_idx = 0
 while (preorder_idx < len(preorder)) and (not selesai):
 # lihat tiap elemen preorder dari kiri ke kanan,
 elemen_preorder = preorder[preorder_idx]
 # dan untuk tiap elemen preorder, periksa satu-satu apakah sama dengan
 # salah satu elemen inorder
 inorder_idx = 0
 while (inorder_idx < len(inorder)) and (not selesai):
 if inorder[inorder_idx] == elemen_preorder:

 selesai = True
 else:
 inorder_idx += 1
 preorder_idx += 1

 # 2. Buatlah node dengan data di index tersebut di inorder.
 # Kalau belum ada root (karena LinkedBintree belum dibentuk sama sekali),
 # buatlah objek LinkedBintree dengan rootnya adalah node tersebut
 current_root = BintreeNode(inorder[inorder_idx])
 if is_starting_node:
 result = LinkedBintree()
 result.root = current_root

 # 3. Pisah inorder menjadi dua bagian,
 # yaitu sebelah kiri dari elemen inorder_idx dan sebelah kanan darinya
 inorder_left = inorder[:inorder_idx]
 inorder_right = inorder[(inorder_idx+1):]

 current_root.left = linkedbintree_from_preorder_inorder(
 preorder, inorder_left, is_starting_node=False
)
 current_root.right = linkedbintree_from_preorder_inorder(
 preorder, inorder_right, is_starting_node=False
)

 if is_starting_node:
 return result
 else:
 return current_root

hasil_pre_in = linkedbintree_from_preorder_inorder(
 preorder=[26, 89, 43, 90, 16, 54, 11, 72, 35],
 inorder=[89, 90, 16, 43, 26, 54, 72, 11, 35]
)

display(hasil_pre_in.get_digraph_simple())

26

89 54

NULL 43

90 NULL

NULL 16

NULL NULL

NULL 11

72 35

NULL NULL NULL NULL

Algoritma ini hampir sama dengan algoritma membentuk binary tree dari preorder dan inorder. Bedanya, di

algoritma ini, dicari elemen inorder yang paling kanan di postorder, daripada yang paling kiri di preorder.

LinkedBintree dari postorder dan inorder

def linkedbintree_from_postorder_inorder(
 postorder, inorder, is_starting_node=True
):

 # Nanti di paling bawah tree kalau inorder sudah kosong,
 # tidak perlu buat node lagi; langsung return None (NULL)
 if len(inorder) == 0:
 return None

 # 1. Di antara semua elemen inorder, mana yang paling KANAN di postorder?
 # Simpan index inorder nya
 selesai = False
 postorder_idx = len(postorder)-1 # mulai dari paling kanan, daripada dari
 while (postorder_idx >= 0) and (not selesai):
 # lihat tiap elemen preorder DARI KANAN KE KIRI,
 elemen_postorder = postorder[postorder_idx]
 # dan untuk tiap elemen postorder, periksa satu-satu apakah sama denga
 # salah satu elemen inorder
 inorder_idx = 0
 while (inorder_idx < len(inorder)) and (not selesai):
 if inorder[inorder_idx] == elemen_postorder:

 selesai = True
 else:
 inorder_idx += 1
 postorder_idx -= 1

 # 2. Buatlah node dengan data di index tersebut di inorder.
 # Kalau belum ada root (karena LinkedBintree belum dibentuk sama sekali),
 # buatlah objek LinkedBintree dengan rootnya adalah node tersebut
 current_root = BintreeNode(inorder[inorder_idx])
 if is_starting_node:
 result = LinkedBintree()
 result.root = current_root

 # 3. Pisah inorder menjadi dua bagian,
 # yaitu sebelah kiri dari elemen inorder_idx dan sebelah kanan darinya
 inorder_left = inorder[:inorder_idx]
 inorder_right = inorder[(inorder_idx+1):]

 current_root.left = linkedbintree_from_postorder_inorder(
 postorder, inorder_left, is_starting_node=False
)
 current_root.right = linkedbintree_from_postorder_inorder(
 postorder, inorder_right, is_starting_node=False
)

 if is_starting_node:
 return result
 else:
 return current_root

hasil_post_in = linkedbintree_from_postorder_inorder(
 postorder=[16, 90, 43, 89, 72, 35, 11, 54, 26],
 inorder=[89, 90, 16, 43, 26, 54, 72, 11, 35]
)

display(hasil_post_in.get_digraph_simple())

26

89 54

NULL 43

90 NULL

NULL 16

NULL NULL

NULL 11

72 35

NULL NULL NULL NULL

(TODO) LinkedBintree dari preorder dan postorder (cara biasa)

def linkedbintree_from_preorder_postorder(
 preorder, postorder, is_starting_node=True
):

 if (not is_starting_node):
 if len(preorder) == 0 or len(postorder) == 0:
 return None
 if len(preorder) == 1:
 return BintreeNode(preorder[0])
 if len(postorder) == 1:
 return BintreeNode(postorder[0])

 # 1. Buatlah node baru dengan datanya adalah preorder[0]
 # (atau sama saja elemen terakhir dari postorder).
 # Kalau belum ada root (karena LinkedBintree belum dibentuk sama sekali),
 # buatlah objek LinkedBintree dengan rootnya adalah node tersebut
 current_root = BintreeNode(preorder[0])
 if is_starting_node:
 result = LinkedBintree()
 result.root = current_root

 # 2. Tentukan list postorder untuk left subtree dan untuk right subtree:
 # 2a. Carilah letak preorder[1] di postorder, misal postorder_idx
 # 2b. Belah postorder menjadi dua, dengan postorder_idx masuk ke kiri,

 # dan elemen terakhir postorder tidak masuk keduanya

 postorder_idx = 0
 while (postorder_idx < len(postorder) and
 postorder[postorder_idx] != preorder[1]):
 postorder_idx += 1

 # 0 <= indeks < (postorder_idx+1)
 postorder_left = postorder[0 : (postorder_idx+1)]

 # (postorder_idx+1) <= indeks < elemen terakhir (indeks -1)
 postorder_right = postorder[(postorder_idx+1) : -1]

 # 3. Tentukan list preorder untuk left subtree dan untuk right subtree:
 # 3a. Carilah letak postorder[-2] di preorder, misal preorder_idx
 # 3b. Belah preorder menjadi dua, dengan preorder_idx masuk ke kanan,
 # dan elemen pertama preorder tidak masuk keduanya

 preorder_idx = 0
 while (preorder_idx < len(preorder) and
 preorder[preorder_idx] != postorder[-2]):
 preorder_idx += 1

 # 1 <= indeks < preorder_idx
 preorder_left = preorder[1 : preorder_idx]

 # preorder_idx <= indeks
 preorder_right = preorder[preorder_idx :]

 print("preorder_left", len(preorder_left))
 print("preorder_right", len(preorder_right))
 print("postorder_left", len(postorder_left))
 print("postorder_right", len(postorder_right))

 # 4. Langkah rekursif: melakukan langkah yang sama di left subtree dan
 # right subtree, hasilnya disambung ke current_root

 current_root.left = linkedbintree_from_preorder_postorder(
 preorder=preorder_left, postorder=postorder_left,
 is_starting_node=False
)
 current_root.right = linkedbintree_from_preorder_postorder(
 preorder=preorder_right, postorder=postorder_right,
 is_starting_node=False
)

 if is_starting_node:
 return result
 else:
 return current_root

test_pre_post = linkedbintree_from_preorder_postorder(
 preorder=["F", "B", "A", "D", "C", "E", "G", "I", "H"],
 postorder=["A", "C", "E", "D", "B", "H", "I", "G", "F"]
)

preorder_left 5
preorder_right 3
postorder_left 5
postorder_right 3
preorder_left 1
preorder_right 3
postorder_left 1
postorder_right 3
preorder_left 1
preorder_right 1
postorder_left 1
postorder_right 1
preorder_left 0
preorder_right 2
postorder_left 2
postorder_right 0

F

B G

A D

NULL NULL C E

NULL NULL NULL NULL

NULL NULL

(TODO) (Pengayaan) LinkedBST dari preorder atau postorder

display(test_pre_post.get_digraph_simple())

(TODO) LinkedBintree dari preorder dan postorder (cara dijamin
complete)

(TODO) LinkedBST dari preorder

(TODO) LinkedBST dari postorder

(TODO) (Pengayaan) -ary treem

