MODUL PRAKTIKUM

PEMROGRAMAN KOMPUTER
DENGAN PYTHON

Program Studi Matematika

Fakultas Sains dan Teknologi
UIN Maulana Malik Ibrahim Malang

2021

KATA PENGANTAR

Puji syukur ke hadirat Allah %, yang telah memberikan ramat-Nya
sehingga Modul Ajar Pemrograman Komputer dengan Python ini
dapat diselesaikan dengan sebaik-baiknya. Sholawat serta salam kita
haturkan kepada junjungan kita Baginda Nabi Muhammad £, semoga
kelak di hari akhir kita mendapatkan syafa’at beliau.

Modul ajar ini dibuat sebagai pedoman dalam melakukan kegiatan
pembelajaran Pemrograman Komputer yang merupakan kegiatan
penunjang mata kuliah pada Jurusan Matematika Fakultas Sains dan
Teknologi UIN Maulana Malik Ibrahim Malang.

Modul ajar ini diharapkan dapat membantu mahasiswa/i dalam
mempersiapkan dan melaksanakan perkuliahan dengan lebih baik,
terarah, dan terencana. Pada setiap topik telah dijelaskan teori singkat
untuk memperdalam pemahaman mahasiswa/i mengenai materi yang
dibahas.

Penyusun menyakini bahwa dalam pembuatan Modul Ajar
Pemrograman Komputer dengan Python ini masih jauh dari
sempurna. Oleh karena itu, penyusun mengharapkan kritik dan saran
yang membangun guna penyempurnaan buku ajar ini di masa yang
akan datang. Akhir kata penyusun mengucapkan banyak terima kasih
kepada semua pihak yang telah membantu baik secara langsung
maupun tidak langsung.

Malang, 13 November 2019

Penyusun

DAFTAR ISI

KATAPENGANTAR ..ottt
DAFTAR ISH coeiiiiiiiiiiiiiiiiieeeeeeee ettt Y,
BAB 1 PENDAHULUAN......ccciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 2
11 INSEAIASTvcveeecc 2
1.2 MEMUIAT ... 2
13 Bahasa PYthon ... 3
BAB 2 VARIABELcoovvviiiiiiiiiiii 4
2.1 Tipe NUMETIK ..o 4
2.2 TIPE SEHNG.c.vieiieiee e 6
BAB 3 TIPEDATAKOLEKSI.....ccoviiiiir e 8
3.1 THPE LIS ..o 8
3.2 TiIpe DICONAIYocveiieiie et 9
3.3 TIPE TUPIE e 9
34 LI 0L =) S 10
BAB 4 FUNGSI...ccoiiiiiiiiiiiiiiiiiieeeeeeeee e 12
4.1 Fungsi GIobal ... 12
4.2 FUNGSi LOKAL ..o 13
4.3 Fungsi Lambda...........cooeiiiieiieee e 13
4.4 Parameter Default ... 14
BAB5 CONTROL FLOWoicuiiiiiiiieieeieeineen e e e 16
51 Ekspresi BooIean...........coeveiiieniiiiieceece e 16

5.2
5.3
5.4
BAB 6
6.1
6.2
6.3
BAB 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8
7.9
7.10
7.11
BAB 8
8.1

OPBIALOIS ...ttt 17
Conditional EXECULIONcccceviericirereseee e, 17
Perulangan (LOOPING)......cccoereirereinenieesenee e, 22
DATA VISUALIZATION ..ocviviiiiniiiiiiiiiiias 28
Visualisasi Data.........ccovrvverneennineese e 28
MatplothiD.......c.ocoveiie 28
Persiapan Data..........cccevveiierieiece e 29
LIBRARY NUMPY ... 32
Pengantar NUMPY.......ccoooiiiinii e 32
Operasi-operasi Dasar pada NUMPY..........c.ccccoeiniiinennes 37
FUNgSi UNIVErSal ..o 39
Indexing, Slicing and Iteratingccoceovvevvvinenvinenn 40
Mengubah bentuk sebuah array............cccccoevicenenncnnnn. 43
Menumpuk bersama array yang berbeda........................ 44
Memecah Array Menjadi Beberapa Bagian yang Lebih
KECH .. 46
Menyalin dan menampilkancccococovevieiieicc e, 47
Aljabar Linier ... 48
Automatic Reshapingcccocevvevieviieiecie e 49
Penumpukan VEKLOr ... 49
LIBRARY SYMPY ... 52
Pengantar SYMPYcoceeiininneeeeee e 52

BAB 9

PYTHON

9.1
9.2
9.3
9.4

BAB 10
PYQT5

10.1
10.2
10.3
10.4
10.5

PEMROGRAMAN BERBASIS OBJEK DENGAN

.. 56
Konsep Class dan Objek ..., 56
ENncapsulation...........ccccoeviiiciiencieee e 62
INNEFItANCE ... 67
Polymorphism ..o 73

PEMROGRAMAN GUI DENGAN PYTHON DAN
76

Pengenalan GUI dengan PyQt5..........cccooevveveeivciieenns 76
Membuat Window AWalccccoevnenniiiencieneee, 77
Signal dan SIOtS........cceoviiiiiiiie 81
LAYOULING .ottt 84
Menggunakan GtDesigner untuk Merancang GUI........... 90

Vi

BAB 1
PENDAHULUAN

Bahasa pemrograman Python mulai populer saat dikarenakan
berbagai hal; mudah dipelajari, tersedia dan bayak library-nya. Nanti
akan kita bahas beberapa library Python ini. Lengkapnya library ini
juga yang menyebabkan Python dipergunakan di berbagai aplikasi.
Berbagai sekolah (dan perguruan tinggi) ba-hkan mengajarkan Python
sebagai pengantar pemrograman.

Bahasa Python tersedia untuk berbagai sistem operasi; Windows, Mac
OS, dan berbagai variasi dari UNIX (Linux, *BSD, dan seterusnya).
Di dalam buku ini saya akan menggunakan contoh-contoh yang saya
gunakan di komputer saya yang berbasis Windows. Meskipun
seharusnya semuanya kompatibel dengan berbagai sistem operasi,
kemungkinan ada hal-hal yang agak berbeda. Jika hal itu terjadi,
gunakan internet untuk mencari jawabannya.

1.1 Instalasi

Python dapat diperoleh secara gratis dari berbagai sumber. Sumber
utamanya adalah di situs python.org. Untuk sementara ini bagian ini
saya serahkan kepada Anda. Ada terlalu banyak perubahan sehingga
bagian ini akan cepat kadaluwarsa.

Untuk sistem operasi berbasis Linux dan Mac OS, Python sudah
terpasang sebagai bawaan dari sistem operasinya. Jika Anda ingin
menggunakan versi terbaru maka Anda harus memasangnya sendiri
dengan mengunduh instalasinya di python.org.

1.2 Memulai

Sekarang kita dapat memulai pemrograman Python dengan
menuliskan program “hello world” (yang merupakan standar bagi
belajar pemrograman). Ketikkan “print ...” (dan seterusnya seperti di
bawah ini).

print ("Hello, world!")
Hello, world!

Python akan menampilkan apapun yang ada di antara tanda petik
tersebut. Hore! Anda berhasil membuat program Python yang
pertama.

Mari kita lanjutkan dengan membuat program yang lebih panjang.
Program Python dapat disimpan di dalam sebuah berkas untuk
kemudian dieksekusi belakangan. Buka editor kesukaan Anda dan
ketikkan program hello world di atas di dalam editor Anda tersebut.
Setelah itu simpan berkas tersebut dengan nama “hello.py”. Biasanya
berkas program Python ditandai dengan akhiran (extension) “.py”.

Setelah berkas tersebut tersedia, maka kita dapat menjalankan Python
dengan memberikan perintah Run Module (F5).

Hello, world!

1.3 Bahasa Python

Tentang bahasa Python itu sendiri akan diperdalam pada versi
berikutnya. Sementara itu fitur tentang bahasa Python akan dibahas
sambil berjalan. Pendekatan ini saya ambil untuk membuat buku
menjadi lebih menarik dan lebih singkat. Belajar seperlunya.

Hal yang sangat berbeda dari bahasa Python dengan bahasa
pemrograman lainnya adalah masalah block dari kode. Bahasa
pemrograman C misalnya menggunakan tanda kurung kurawal “{”
untuk menyatakan blok. Sementara itu Python menggunakan
indentation untuk menyatakan satu blok. Lihat contoh di bawah ini.
for i in range (10):
print (i)

Disarankan untuk menggunakan spasi sebanyak empat (4) buah untuk
indentation tersebut. (Ini membuat banyak perdebatan karena ada
banyak orang yang menggunakan tab bukan spasi.)

BAB 2
VARIABEL

2.1 Tipe Numerik

Python mendukung beberapa tipe data untuk keperluan penyimpanan
data numerik. Data numerik yang dapat digunakan meliputi bilangan
bulat, bilangan riil, dan bilangan kompleks. Semua objek dari tipe
numerik tidak dapat diubah nilainya atau bersifat immutable. Bagian
ini menjelaskan tentang masing-masing tipe data tersebut.

2.1.1 Bilangan Bulat

Terdapat dua tipe data bilangan bulat yang didukung oleh python 3,
yaitu integer (int) dan boolean (bool). Python 3 tidak memiliki nilai
maksimum untuk tipe int. untuk mengonversi bilangan bulat ke string,
gunakan fungsi str(), seperti berikut:

>>> a = 12345

>>> type (a)

<class 'int'>

>>> b = str(a)

>>> b '12345'

>>> type (b)

<class 'str'>

Sebaliknya jika anda ingin mengonversi nilai dari tipe string ke int,
gunakan fungsi int().

>>> a = '12345'

>>> type (a)

<class 'str'>

>>> b = int (a)

>>> b 12345

>>> type (b)

<class 'int'>

Tipe bool digunakan untuk menyatakan tipe logika (boolean). objek
dari tipe bool hanya dapat diisi dengan nilai True atau False (huruf T
dan F harus di tulis dalam huruf besar). jika di konversikan ke tipe int,
nilai true akan menghasilkan nilai 1 dan False menghasilkan nilai 1.

4

>>> int (True)
1

>>> int (False)
0

>>> a=True

>>> type (a)
<class 'bool'>
>>> int (a)

1

2.1.2 Bilangan Riil

Untuk merepresentasikan data bertipe bilangan riil (mengandung
angka di belakang koma), Python menyediakan tipe float. Bilangan
dengan tipe float ditulis menggunakan tanda titik (.), seperti berikut:

>>> a=123.456
>>> a

123.456

>>> type (a)
<class 'float'>
>>> a*2

246.912

Anda juga dapat menulis bilangan riil dalam bentuk eksponen, seperti
berikut:

>>> a=8.9e-4
>>> a
0.00089

Notasi diatas menunjukkan nilai 8.9 x 1 0 -4

untuk mengonversi bilangan dengan tipe float ke string, gunakan
fungsi str(). Sebaliknya, untuk mengonversi string ke tipe float,
gunakan fungsi float().

>>> a=123.456
>>> type (a)
<class 'float'>
>>> b=str(a)
>>> b

'123.456"

>>> type (b)
<class 'str'>
>>> c=float (b)
>>> ¢

5

123.456
>>> type (c)
<class 'float'>

2.1.3 Bilangan Kompleks

Bilangan kompleks adalah bilangan yang mengandung pasangan
bilangan dari tipe float. Bagian pertama merupakan bagian riil dan
bagian kedua merupakan bagian imajiner, kedua bagian tersebut
digabung menggunakan tanda + atau - dan diakhiri dengan huruf j.
>>> a=-9+17j

>>> a

(=9+177)

>>> type (a)

<class 'complex'>

>>> a.real

-9.0

>>> a.imag
17.0

2.2 Tipe String

Dalam Python, teks (string) merupakan kumpulan karakter Unicode
yang direpresentasikan dengan tipe str. Objek string dapat dibuat
melalui tiga cara, yaitu:

e Menggunakan tanda petik tunggal

e Menggunakan tanda petik ganda

e Menggunakan tanda petik tunggal atau petik ganda yang
ditulis tiga kali

Cara Terakhir biasanya hanya digunakan untuk membuat string
panjang yang jumlahnya lebih dari satu baris

>>> sl='PyQt'

>>> sl

IPyQtl

>>> s2="Python"

>>> 52

'Python'

>>> s3=""'"' Pemrograman GUI dengan Python dan PyQt '''
>>> s3 '\nPemrograman GUI\ndengan Python dan PyQt\n'
>>> s4=""" Pemrograman GUI dengan Python dan PyQt """

>>> s4
'\nPemrograman GUI\ndengan Python dan PyQt\n'
>>> b="python'

>>> b

'python'

>>> b=b.capitalize()
>>> b

'Python'

>>> b=b.upper ()

>>> b

'PYTHON'

>>> b=b.lower ()

>>> b

'python'

>>> b.isupper ()
False

>>> b.islower ()

True

>>> s=' '.join(['saya', 'makan', 'ayam'])
>>> 5

'saya makan ayam'
>>> nim='16610021"
>>> nim.isnumeric ()
True >>>
nim='16610021"

>>> nim.isnumeric ()
False

BAB 3
TIPE DATA KOLEKSI

3.1 Tipe List

List merupakan objek yang bersifat mutable atau nilainya dapat
diubah. Kita dapat menambah, mengubah, maupun menghapus
elemen-elemen yang terdapat di dalam list. Objek list dibuat
menggunakan tanda []. Setiap objek atau elemen yang terdapat di
dalam list harus dibatasi menggunakan tanda koma, tapi tidak harus
sejenis. Artinya, bisa saja list berisi beberapa objek yang berasal dari
tipe berlainan, misalnya str, int, dan sebagainya.

>>> 1ist1=[100,200,300,400]

>>> list2=[1, 'Pemrograman Komputer',12000.00]

>>> 1ist=[10,8,12,6,15]

>>> list

[io, 8, 12, 6, 15]

>>> len(list) #Menghitung banyaknya elemen didalam list

5

>>> 1i=[10,8,12,6,15]

>>> 1i

[10, 8, 12 6, 15]

>>> 1i[0],1i([1],1i[2],1i([3],11i[4]

(10, 8, 12 6, 15)

>>> 1i[-5],1i[-4]1,1i[-3],1i[-2],1i[-1]

(10, 8, 12, 6, 15)

>>> 1i.append (20) #menambahkan elemen dalam list

>>> 1i.append(25)

>>> 1i [10, 8, 12, 6, 15, 20, 25]

>>> 1i.extend([100,200,300]) #menambahkan list dalam sebuah
list

>>> 1i

fio, 8, 12, 6, 15, 20, 25, 100, 200, 300]

>>> 1i[0]=99
>>> 1i[1]1=77
>>> 1i

[99, 77, 12,

6, 15, 20, 25, 100, 200, 300]
>>> 1i.remove (

(

(

4

99) #menghapus elemen di dalam list
300)

15)

>>> 1li.remove
>>> 1li.remove
>>> 11

[77, 12, 6, 20, 25, 100, 200]

>>> li.clear () #Menghapus Semua elemen didalam list

>>> 11

]
3.2 Tipe Dictionary

Dictionary (kamus) atau sering juga disebut tipe mapping merupakan
objek yang berisi daftar pasangan kunci dan nilai (key-value pair).
Pada struktur data list, elemen-elemen diindeks berdasarkan bilangan
positif maupun negatif tergantung dari arah mana elemen-elemen
tersebut akan diakses. Pada struktur dat dictionary, elemen-elemen
akan diindeks berdasarkan kuncinya. Objek yang dijadikan sebagai
kunci dapat berasal dari tipe apa saja, tapi pada umumnya berupa
string, atau paling tidak berupa bilangan. Berbeda dengan list,
dictionary dibuat menggunakan { }. Setiap pasangan kunci dan nilai
harus dipisahkan menggunakan tanda (:).

>>> na={'A':4,'B':3,'C':2,'D':1,'E':0}

>>> na

{'‘a': 4, 'B': 3, 'C': 2, 'D': 1, '"E': 0}

>>> na.keys () #Menampilkan Kata Kunci (key) dalam Dictionary
dict keys(['A', 'B', 'C', 'D', 'E'])

>>> na.values () #Menampilkan Kata Value dalam Dictionary
dict values([4, 3, 2, 1, 0])

>>> na['A']

4

>>> na['B']

3

>>> na['C']

2

>>>

>>> kamus={'mouse':'tikus', 'cat':'kucing'}
>>> kamus|['cat']

'kucing'

>>> kamus.keys ()

dict keys(['mouse', 'cat'])

>>> kamus.values ()

dict values(['tikus', 'kucing'l])

3.3 Tipe Tuple

Tuple adalah tipe koleksi yang mirip dengan list. Pebedaannya, tuple
bersifat immutable atau elemen-elemennya tidak dapat diubah, baik
nilainya maupun jumlah elemennya. Ini berarti bahwa kita tidak dapat

9

menambah, mengubah, atau menghapus elemen di dalam tuple.
Dengan kata lain, tuple merupakan koleksi yang bersifat konstan.
Tuple dibuat menggunakan tanda ().

>>> t=(10,20,30)

>>> t[0]

10

>>> t[1]

20

>>> t[2]

30

>>> t[-3],t[-2],t[-1]
(10, 20, 30)

>>> len(t) #Menghitung banyaknya elemen didalam Tuple
3

3.4 Tipe Set

Set (himpunan) adalah tipe koleksi yang setiap elemennya bersifat
unik. Dengan demikian, di dalam set tidak akan pernah ada duplikasi
nilai elemen. Jika pada saat pembuatan set terdapat beberapa elemen
yang nilainya sama, maka elemen-elemen tersebut hanya akan
diambil satu, sisanya secara otomatis akan dibuang. Set dibuat
menggunakan fungsi set() dengan parameter bisa berupa list,
dictionary, tuple, maupun string.

>>> s=set ([10,10,20,30,30,30])

>>> s

{10, 20, 30}

>>> len(s)

3

>>> s.add (60) #Menambahkan anggota himpunan (set)

>>> s

{10, 20, 30,60}

>>> len(s)
4

10

11

BAB 4
FUNGSI

Fungsi adalah bagian atau blok program yang berisi satu tugas
spesifik. Ketika dipanggil, fungsi ada yang menghasilkan atau
mengembalikan nilai dan ada juga yang tidak. Nilai yang dihasilkan
oleh fungsi disebut dengan istilah nilai balik (return value). Dalam
beberapa bahasa pemrograman lain, fungsi dengan nilai balik disebut
fungsi dan fungsi tanpa nilai balik disebut prosedur. fungsi hanya
perlu didefinisikan satu kali, tapi dapat digunakan atau dipanggil
berkali-kali. Dalam Phyton, fungsi didefinisikan menggunakan
perintah def melalui bentuk umum berikut :
def NamaFungsi (parameterl,parameter2,...):

#badan fungsi
Daftar parameter dari suatu fungsi bersifat opsional, tapi sebagian
besar fungsi pada umumnya memiliki satu parameter atau lebih.
Terdapat empat jenis fungsi yang dapat dibuat di dalam Phyton, yaitu
: fungsi global, fungsi lokal, dan fungsi lambda.

4.1 Fungsi Global

Fungsi global adalah fungsi yang didefinisikan di dalam suatu modul
dan dapat dipanggil oleh fungsi lain, baik yang berada di dalam modul
yang sama maupun modul lain.
>>> def kali(a,b):

c=a*b

return c¢ # mengembalikan nilai ke baris pemanggil
>>> def tulis(s):

print(s)
>>> z=kali (10,5)
>>> 7z
50

>>> tulis ('Pemrograman Komputer I dengan Python')
Pemrograman Komputer I dengan Python

>>> tulis(z)

50

12

4.2 Fungsi Lokal

Fungsi lokal adalah fungsi yang didefinisikan di dalam fungsi lain.
fungsi lokal sering disebut fungsi bersarang (nested function). berbeda
dengan fungsi global, fungsi lokal hanya akan dikenal oleh fungsi luar
tempat fungsi lokal tersebut didefinisikan.
>>> def persentase(a,b,c):
def hitungPersen (x):

total=atb+c

return (x*100.0) /total

print ("Persentase: $f\t%f\t%f" %
(hitungPersen (a),hitungPersen (b),hitungPersen(c)))
>>> persentase (50,50,50)
Persentase: 33.333333 33.333333 33.333333

>>> persentase (30, 90, 30)
Persentase: 20.000000 60.000000 20.000000

4.3 Fungsi Lambda

Fungsi lambda adalah suatu ekspresi untuk menangani tugas-tugas
pemrograman yang sederhana. Fungsi jenis ini sering dikenal dengan
fungsi tanpa nama (anonymous function) dan dibuat menggunakan
kata kunci lambda. Bentuk umum penggunaan kata kunci lambda
adalah sebagai berikut :

lambda DaftarParameter: ekspresi

Berikut ini contoh kode yang menunjukkan penggunaan kata kunci
lamda.

>>> maks = lambda a,b: a if a>b else b
>>> maks (20, 10)

20

>>> maks (100, 200)

200

>>>

Jika ditulis dalam bentuk fungsi normal, kode di atas dapat diubah
menjadi seperti berikut:

>>> def maks(a,b):
if a>b:
return a

13

else:
return b

>>> maks (20, 10)

§S> maks (100,200)

200

Terdapat beberapa hal yang tidak dapat dilakukan pada fungsi
lambda, sehingga kita perlu menggunakan fungsi normal. jika anda
ingin menyertakan struktur pengulangan for maupun while, perintah-
perintah non-ekspresi, dan perintah yang berjumlah lebih dari satu,
maka anda tidak dapat menggunakan fungsi lambda. Fungsi lambda
biasanya diperankan sebagai parameter dari suatu fungsi lain. Fungsi
yang berperan sebagai parameter sering disebut dengan fungsi
callback.

4.4 Parameter Default

Suatu parameter fungsi dapat memiliki nilai default pada saat fungsi
tersebut didefinisikan. Proses pengisisan nilai ke dalam parameter
dilakukan menggunakan operator penugasan (=). Melalui cara ini, kita
dapat memanggil fungsi tanpa menyertakan nilai untuk parameter
bersangkutan. Parameter seperti ini sering disebut parameter default
atau parameter opsional. Parameter default harus ditempatkan pada
urutan paling akhir dari daftar parameter lain.

>>> def tulis(s, gantibaris=True) :
if not gantibaris:

print(s,end="")

else:

print(s)

>>> tulis ('Python')

Python

>>> tulis ('Python',False);tulis (' dan Ruby')
Python dan Ruby

>>> tulis ('Python');tulis ('Ruby")
Python

Ruby

>>>

14

Parameter gantibaris pada contoh kode di atas merupakan parameter
default. Nilai default untuk parameter tersebut adalah True. Ini berarti
bahwa jika fungsi tulis() dipanggil tanpa menyertakan parameter
kedua, maka parameter ganti baris akan diisi dengan nilai True.

15

BAB 5
CONTROL FLOW

5.1 Ekspresi Boolean

Sebuah ekspresi Boolean adalah ekspresi yang bernilai true atau false.
Ekspresi ini digunakan untuk membandingkan dua nilai atau variabel
(operand). Contoh berikut merupakan ekspresi boolean menggunakan
operator ‘==" (sama dengan / equality) untuk membandingkan 2 buah
nilai:

>>> 5 == 5

True

>>> 5 ==

False

True dan False merupakan tipe data khusus, yaitu boolean, bukan tipe
data string. Selain operator ‘==", ada beberapa operator lain yang bisa
digunakan untuk membuat ekspresi boolean, operator-operator ini
disebut operator relasi. Operator relasi ditunjukkan pada Tabel 5.1.
Operator Relasi.

Tabel 5.1. Operator Relasi

Ekspresi Deskripsi

X == bernilai True jika x sama dengan y

Xl=zy bernilai True jika x tidak sama dengan y

X>y bernilai True jika x lebih dari y

X<y bernilai True jika x kurang dari y

X>=y bernilai True jika x lebih dari atau sama dengan y

16

X<=y bernilai True jika x kurang dari atau sama dengan y

5.2 Operators

Operator logika merupakan jenis operator yang akan membandingkan
logika hasil dari operator relasi. Terdapat macam operator yang
termasuk dalam operator logika yaitu: and, or, dan not. Deskripsi dari
masing-masing operator tersebut dijelaskan pada Tabel 5.2. Operator
Logika.

Contoh operator and adalah x > 0 and x < 10 akan bernilai True jika
dan hanya jika x lebih besar dari 0 dan kurang dari 10. Ekspresi n%2
== 0 or n%3 == 0 akan bernilai True jika bilangan n habis dibagi 2
atau 3. Ekspresi not (x > y) bernilai True jika x >y bernilai False,
yaitu jika x kurang dari atau sama dengan y.

Tabel 5.2. Operator Logika

Operator Deskripsi

and Melakukan pengecekan kondisi yang harus bernilai True untuk kedua operant
secara bersamaan

or Melakukan pengecekan kondisi yang dapat bernilai True pada salah satu atau
kanan dan Kiri

not Melakukan pengecekan kondisi NOT, atau membalikkan kondisi. Contoh NC

5.3 Conditional execution

Pada saat membuat sebuah program, kadangkala kita membutuhkan
pemilihan pernyataan mana yang akan dijalankan oleh komputer.
Kemampuan pemilihan perintah inilah yang disebut conditional
statement. Contoh sederhana dari pernyataan conditional ini adalah
sebagai berikut:

17

if x > 0:

print ('x is positive’)
Pada contoh di atas, pernyataan print ’x is positive’ akan dijalankan
jika x > 0, sedangkan jika sebaliknya maka pernyataan tersebut tidak
dijalankan. Ada beberapa conditional statement yang akan dibahan
pada bab ini.

5.3.1 5.3.1 Conditional if

Conditional if digunakan untuk memilih apakah sebuah pernyataan
akan dijalankan atau tidak sesuai kondisi yang diberikan. Alur
pemilihan if ditunjukkan pada Gambar 5.1.

Flowchart

Pernyataan

Gambar 5.1. Alur Pemilihan if

Sintaks pemilihan if adalah sebagai berikut:

if kondisi:
statement

Kondisi pada sintaks tersebut dapat berisi ekspresi relasi dan atau
ekspresi logika.

Percobaan Conditional if

1. Buka python editor dan buat script baru dengan nama
"Percobaanl.py".
2. Tuliskan kode untuk mengambil masukan dari user.

18

nilai = input ("Masukkan nilai Anda: ")

3. Tuliskan kode conditional if untuk melakukan pengecekan nilai.
Jangan lupa konversikan variabel nilai menjadi int.

if int(nilai) >= 70:
print ("Anda lulus ujian! SELAMAT!")

4. Jalankan program tersebut dan perhatikan hasilnya.
5.3.2 Conditional if-else

Conditional if-else digunakan untuk memilih pernyataan mana yang
akan dijalankan dari 2 pernyataan sesuai kondisi yang diberikan. Alur
pemilihan if-else ditunjukkan pada Gambar 5.2.

Flowchart
N\
Tidak Y . Ya

.
_____ﬁ;\\ij:///%________

Y v

Pernyataan-2 Pernyataan-1

Gambar 5.2. Alur Pemilihan if-else

Sintaks pemilihan if-else adalah sebagai berikut:

if kondisi:
statementl

else:
statement?2

19

Pernyataan pada blok if akan dijalankan jika kondisi bernilai True,
tapi jika bernilai False maka pernyataan pada blok else akan
dijalankan.

Percobaan Conditional if-else

1. Buka script Percobaanl.py yang sudah Anda buat.
2. Tambahkan kode conditional if-else untuk melakukan pengecekan
nilai apakah lulus atau tidak.
if int(nilai) >= 70:
print ("Anda lulus ujian! SELAMAT!")

else:
print ("Anda belum lulus ujian!")

3. Jalankan program tersebut dan perhatikan hasilnya.
5.3.3 Conditional if-elif-else

Conditional if-elif-else digunakan untuk memilih pernyataan mana
yang akan dijalankan dengan beberapa kondisi pengecekan. Alur
pemilihan if-elif-else ditunjukkan pada Gambar 5.3.

Sintaks pemilihan if-elif-else adalah sebagai berikut:

if kondisil:
statementl

elif kondisi2:
statement?2

else:
statementX

Pernyataan pada blok if akan dijalankan jika kondisil bernilai True,
tapi jika bernilai False maka akan dicek kondisi2 pada elif dan
seterusnya sampai dengan else.

20

A 4

Pernyataan 1

L4
Pernyataan 2

Y v
Pernyataan 3 Pernyataan X

Tidak

A SN 4

Gambar 5.3. Alur Pemilihan if-elif-else

Percobaan Conditional if-elif-else

1. Buka script Percobaanl.py yang sudah Anda buat pada Percobaan
1 dan 2.
2. Tambahkan kode conditional if-elif-else untuk melakukan
pengecekan nilai apakah valid dan lulus atau tidak.
if int(nilai) < 0 or int(nilai) > 100:
print ("Nilai Anda TIDAK valid")
elif int(nilai) >= 70:
print ("Anda lulus ujian! SELAMAT!")

else:
print ("Anda belum lulus ujian!™)

3. Jalankan program tersebut dan perhatikan hasilnya.

Latihan

1. Buatlah program untuk menginputkan dua buah bilangan bulat,
kemudian mencetak salah satu bilangan yang nilainya terbesar!

2. 2. Pada akhir semester seorang dosen menghitung nilai akhir dari
mahasiswa yang terdiri dari nilai uas, uts, kuis, dan tugas. Nilai

21

akhir didapatkan dari 40% nilai uas, 30% nilai uts, 10% nilai kuis,
dan 20% nilai tugas. Jika nilai akhir dari mahasiswa di bawah 65
maka mahasiswa tersebut akan mendapatkan remidi. Buatlah
program untuk membantu mengetahui mahasiswa yang
mendapatkan remidi berdasarkan nilai akhir yang didapatkannya!

3. Buatlah program kalkulator sederhana menggunakan Python. User
akan memasukkan dua buah bilangan riil dan satu buah operator
aritmatika (+, -, *, atau /), kemudian program akan
mengoperasikan dua bilangan tersebut dengan operator yang
sesuai. Contoh tampilan program:

Masukkan kilangan pertama: 5
Masukkan operator (+,-,%,/): *
Masukkan bilangan kedua: 2.5
5.0 * 2,5 = 12.5

= I

Gambar 5.4. Contoh output program kalkulator sederhana

5.4 Perulangan (Looping)

Loop adalah suatu blok atau kumpulan instruksi yang dilaksanakan
secara berulang-ulang. Perulangan yang disebut juga repetition akan
membuat efisiensi proses diban-dingkan jika dioperasikan secara
manual. Diagram pada Gambar 5.5 mengilustrasikan sebuah
pernyataan loop.

22

|

_~condition™~__
“~evaluated

false

Gambar 5.5. Alur Perulangan

Ada dua jenis perulangan dalam Python, yaitu while loop dan for loop.
54.1 While Loop

Perulangan dengan while akan mengulang sebuah pernyataan atau
kumpulan pernyataan jika kondisi yang diberikan bernilai True.
Kondisi akan dicek terlebih dahulu sebelum menjalankan body loop.
Sintaks perulangan while adalah sebagai berikut:

while kondisi:
statement

Contoh penggunaannya adalah sebagai berikut:

count = 0
while count < 5:
print (count)
count += 1 #menampilkan 0 1 2 3 4

Percobaan While Loop
Program untuk menghitung nilai faktorial.

1. Buka python editor dan buat script baru dengan nama
"Faktorial.py".

2. Tuliskan fungsi faktorial yang berisi perulangan dengan while
untuk menghitung nilai faktorial.

23

def faktorial (n):
fac =1
i=1
while i <= n:
fac = fac * i
i4=1
return fac
3. Tuliskan kode untuk mengambil masukan dari user. Jangan lupa
konversikan variabel n menjadi int.

angka = int (input ("Masukkan nilai yang akan dihitung:
"))

4. Jalankan program tersebut dan perhatikan hasilnya.

faktorial (angka)

Percobaan Looping dengan Break

1. Buka python editor dan buat script baru dengan nama
"LoopBreak.py".

2. Tuliskan kode program berikut:
b =0

while True:
angka = int (input ("Masukkan Angka: "))

b += angka
if b > 50:
break print ("Angka berhenti pada jumlah: " + Db)

3. Jalankan program tersebut dan perhatikan hasilnya.
5.4.2 For Loop

Perulangan dengan loop melakukan perulangan setiap elemen pada
sebuah kumpulan data (array, list, dictionary, range). Sintaks
perulangan for adalah sebagai berikut:

for element in sequence:
statement

Contoh penggunaannya adalah sebagai berikut:

primes = [2,3,5,7]

24

for prime in primes:
print (prime) #menampilkan 2 3 5 7

Percobaan For Loop
Program perulangan dengan for untuk menghitung jumlah total.

1. Buka python editor dan buat script baru dengan nama
"ForLoop.py".
2. Buat list yang berisi beberapa angka.

numbers = [1,10,20,30,40,50]

3. Tuliskan kode untuk melakukan perhitungan jumlah total angka
yang ada dalam list.
sum = 0

for number in numbers:
sum += number

4. Jalankan program tersebut dan tampilkan hasilnya.

print (sum)

Latihan

1. Buatlah program yang meminta masukan user sebuah bilangan
bulat N di mana (N > 0). Program kemudian menampilkan
penjumlahan N bilangan genap positif pertama (bilangan genap >
0). Contoh:

» Jika user memasukkan N = 3, maka outputnya: 0 +2 +4 =6
» Jika user memasukkan N =5, maka outputnya: 0 +2 +4 + 6
+8=20

2. Buatlah sebuah program yang meminta masukan user sebuah
bilangan bulat N dimana (N > 0). Kemudian, program
menampilkan penjumlahan N bilangan kuadrat pertama. Bilangan
kuadrat adalah = 1,4,9,16,25,36,...., N 2 . Contoh:

» Jika user memasukkan N = 2, maka outputnya: 1 +4 =5
» Jika user memasukkan N = 3, maka outputnya: 1 + 4 + 9 =
14

25

3. Buatlah sebuah program yang meminta masukan user sebuah
bilangan bulat N dimana (N > 0). Program kemudian memeriksa
setiap digit yang ada di angka tersebut, dan menampilkan berapa
jumlah digit yang ganjil dari bilangan N tersebut.

» Jika user memasukkan N = 2345, jumlah digit yang ganjil =
2

» Jika user memasukkan N = 993312, jumlah digit yang ganjil
=5

26

27

BAB 6
DATA VISUALIZATION

6.1 Visualisasi Data

Python sudah sangat mendukung untuk visualisasi data baik untuk
plot grafik, scatter, bar, maupun yang lain. Ada banyak library yang
bisa dipakai untuk melakukan visualisasi data, seperti matplotlib,
bokeh, seaborn, dan sebagainya. Namun, tidak semua library kita
bahas dalam tutorial ini.

6.2 Matplotlib

Visualisasi data pada python dapat dilakukan menggunakan library
matplotlib. Matplotlib merupakan salah satu library python untuk
plotting grafik 2D dengan environment yang interaktif. Untuk
visualisasi sederhana kita bisa menggunakan modul pyplot pada
library matplotlib. Visualisasi data menggunakan matplotlib langkah-
langkah utamanya adalah:

1. import library matplotlib dan library lain yang dibutuhkan
2. menyiapkan data

3. plotdata

4. menampilkan plot grafik

Contoh membuat plot grafik sederhana menggunakan matplotlib
adalah sebagai berikut:

import library

import matplotlib.pyplot as plt

persiapan data

x = [1,2,3,4]

y = [10,20,25,30]

membuat plot grafik

fig = plt.figure()

ax = fig.add subplot(111)

ax.plot(x, y, color=‘lightblue’, linewidth=3)

ax.scatter([2,4,6],[5,15,25],color="darkgreen’,
marker="' *)

ax.set xlim(1l, 6.5)

28

menyimpan grafik
plt.savefig(‘foo.png’)
menampilkan grafik
plt.show ()

6.3 Persiapan Data

Tahapan ini adalah tahapan untuk menyiapkan data, baik data 1D
maupun data 2D. Persiapan data dapat dilakukan dengan membaca
dari file (import file) atau dengan mengenerate data dengan program.

6.3.1 1D Data

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace (0, 10, 100)

Yy = np.cos (x)

z = np.sin(x)
6.3.2 2D Data atau Gambar
data = 2*np.random.random((10, 10))

data2 = 3*np.random.random((10, 10))
Y, X = np.mgrid[-3:3:100j, -3:3:1007]
U=-1-X**2+Y
V=1+X-Y ** 2
from matplotlib.cbook import get sample data img =
np.load(get sample data(‘axes_grid/
bivariate normal.npy’))

6.3.3 Import Spreadsheet

import pandas as pd

Load csv

df = pd.read csv(‘example.csv’)

Load excel spreadsheet

x]1 = pd.ExcelFile (‘example.xlsx’)

Print sheet names

print (x1.sheet names)

Load sheet ke sebuah DataFrame dengan nama:
dfl

dfl = xl.parse(‘Sheetl’)

6.3.4 Membuat Plot

fig = plt.figure()
fig2 = plt.figure(figsize=plt.figaspect(2.0))
Figure dan Axes

29

* Figure adalah seluruh window atau halaman. Kita dapat membuat
banyak figure. Sebuah figure dapat mengandung beberapa komponen
di dalamnya, seperti title, legend, axes, dan sebagainya.

» Axes adalah area di mana data akan divisualisaikan menggunakan

fungsi plot() atau scatter(). Di dalam figure bisa terdapat banyak axes.
fig.add axes()

axl = fig.add subplot(221) # row-col-num

ax3 = fig.add subplot (212)

fig3, axes = plt.subplots(nrows=2,ncols=2)
fig4, axes2 = plt.subplots(ncols=3)

Melakukan Plot

Inisialisasikan figure dan axes yang akan dipakai
fig, ax = plt.subplots()

Menggambar titik dengan garis atau tanda yang menghubungkan
masing-masing titik

lines = ax.plot(x,y)

Menggambar titik yang terpisah, berbeda ukuran dan atau warnanya
ax.scatter (x,y)

Menggambar diagram batang vertikal
axes[0,0].bar([1,2,31,13,4,5])
Menggambar diagram batang horisontal
axes[1,0] .barh([0.5,1,2.5],[0,1,2])
Menggambar garis horisontal pada axes
axes[1l,1].axhline (0.45)

Menggambar garis vertikal pada axes
axes[0,1].axvline (0.65)

Menggambar polygon tertutup warna tertutup

30

ax.fill (x,y,color="blue’)

Mewarnai antara y = nilai dan 0

ax.fill between(x,y,color="‘yellow’)
Menampilkan dan Menyimpan Plot
Menampilkan plot grafik

plt.show ()

Menyimpan figure
plt.savefig(‘foo.png’)

Menyimpan figure dengan background transparan
plt.savefig(‘foo.png’, transparent=True)

31

BAB 7
LIBRARY NUMPY

7.1 Pengantar NumPy

Topik utama dari NumPy adalah array multidimensi yang diindeks
oleh tuple atau pasangan bilangan bulat positif. Dalam NumPy
dimensi disebut sebagai axis, dan banyaknya axis disebut rank.
Sebagai contoh, koordinat sebuah titik diruang 3D dinyatakan sebagai
[1,2,1] yang merupakan sebuah array dengan rank 1 karena terdiri dari
satu axis. Sedangkan panjang axis tersebut adalah 3.

Pada contoh berikut, array-nya mempunyai rank 2. Axis pertama
panjangnya 2, dan axis kedua panjangnya 3.
[l 1op @op @l

I O0cp Loy 2117
array NumPy disebut sebagai ndarray , atau dikenal juga dengan
sebutan array. Catat bahwa numpy.array tidak sama dengan array
Standard Python array.array, yang hanya bisa digunakan untuk array
satu dimensi dan dengan fitur yang lebih sedikit. Atribut yang paling
penting dari ndarray adalah:

ndarray.ndim banyaknya axis atau dimensi dari array. Di Python,
banyaknya dimensi disebut sebagai rank.

ndarray.shape dimensi dari array. Ini adalah pasangan bilangan bulat
yang menunjukkan ukuran array di setiap dimensi. Untuk
matriks dengan n baris dan m kolom, bentuknya adalah (n, m).
Panjang dari pasangan shape adalah rank, atau jumlah dimensi,
ndim.

ndarray.size jumlah elemen dari array. Ini sama dengan perkalian
elemen dari shape.

ndarray.dtype sebuah objek yang menggambarkan jenis elemen dalam
array. Seseorang dapat membuat atau menentukan jenis dtype

32

menggunakan jenis Python standar. Selain itu NumPy
menyediakan jenisnya sendiri. numpy.int32, numpy.int16, dan
numpy.float64 adalah beberapa contohnya.

ndarray.itemsize ukurandalambytedarisetiapelemenarray. Sebagai

contoh, sebuah array dari elemen tipe float64 memiliki
itemsize 8 (= 64/8), sedangkan satu dari tipe complex32
memiliki itemsize 4 (= 32/8). Ini sama dengan
ndarray.dtype.itemsize.

ndarray.data buffer yang mengandung elemen sebenarnya dari array.

Biasanya, kita tidak perlu menggunakan atribut ini karena kita
akan mengakses elemen dalam array menggunakan fasilitas
pengindeksan.

Contoh:

>>> import numpy as np

>>> a
>>> a
array
[5
[10,
>>> a
(31 5
>>> a
2

>>> a
"inté
>>> a
8

>>> a
15
>>> t
<type
>>> b
>>> b
array
>>> t
<type

33

= np.arange (15) .reshape (3, 5)

(re o, 1, 2, 3, 41,
6/ 7/ 8/ 9][

11, 12, 13, 1411])
.shape

)

.ndim

.dtype.name
4!
.ltemsize

.size

ype (a)
"numpy.ndarray’ >
= np.array([6, 7, 8])

(e, 7, 81)
ype (b)
"numpy.ndarray’ >

7.1.1 Membuat Array

Ada beberapa cara untuk membuat array. Misalnya, Anda dapat
membuat array dari list Python biasa atau pasangan menggunakan
fungsi array. Tipe array yang dihasilkan disimpulkan dari tipe elemen
dalam array.

>>> import numpy as np

>>> a = np.array([2,3,4])

>>> a

array ([2, 3, 4])

>>> a.dtype

dtype (' int64")

>>> b = np.array([l1.2, 3.5, 5.11])

>>> b.dtype dtype (' float6d’)

Kesalahan yang sering terjadi dalam pembuatan array diantaranya
adalah:

>>> a = np.array(1,2,3,4) # WRONG

>>> a = np.array([1,2,3,4]) # RIGHT

array mengubah barisan dari sebuah barisan menjadi array dua
dimensi, barisan dari barisan sebuah barisan menjadi array tiga
dimensi, dan seterusnya.

>>> b = np.array([(1.5,2,3), (4,5,6)1])

>>> b

array ([[

[

1.5, 2., 3.1,
4. , 5., 6. 11)

Jenis array juga dapat secara eksplisit ditentukan pada saat
pembuatan:

>>> ¢ = np.array([[1,2]1, [3,4] 1,
dtype=complex)

>>> ¢

array([[1.40.3, 2.+0.5]

[3.+0.73, 4-+0-jJi)

Seringkali, elemen dari sebuah array pada awalnya tidak diketahui,
namun ukurannya diketahui. Oleh karena itu, NumPy menawarkan
beberapa fungsi untuk membuat array yang memuat nilai awal. Hal

34

tersebut dapat meminimalkan pertumbuhan memori yang diperlukan
array , sebagai operasi yang dianggap mahal.

Fungsi zeros menciptakan sebuah array yang berisi angka nol, fungsi
ones yang menciptakan array yang berisi angka satu, dan fungsi empty
men ciptakan array yang isinya acak dan bergantung pada keadaan
memori. Secara default, dtype dari array yang dibuat adalah float64.

>>> np.zeros((3,4))

array([[0., 0., 0., 0.1,
[O.p 0oy 0oy 061,
[0., 0., 0., 0.11)

>>> np.ones((2,3,4), dtype=np.intl6) # dtype
can also be specified

array ([[[1, 1, 1, 171,
i1, 1, 1, 11,
ri1, 1, 1, 111,
or 1, 1, i, 1j,
ri, 1, 1, 11,
[1, 1, 1, 1111, dtype=intlé6)
>>> np.empty((2,3)) # uninitialized , output

may vary
array ([[3.73603959e-262, 6.02658058e-154,
6.55490914e-2601,
[5.30498948e-313, 3.14673309e-307,
1.00000000e+000]1)
Untuk membuat barisan angka, NumPy menyediakan fungsi yang
mirip dengan range yang outputnya berupa array dan bukan berupa
list .
>>> np.arange (10,30,5)
array([10, 15, 20, 251])
>>> np.arange (0,2,0.3) # it accepts float
arguments
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
Jika arange digunakan dengan argumen floating point, biasanya sulit
memprediksi jumlah elemen yang diperoleh, karena presisi floating

point yang terbatas. Untuk itu, lebih baik menggunakan fungsi

35

linspace yang dapat menerima masukan berapa jumlah elemen yang
kita inginkan:

>>> from numpy import pi
>>> np.linspace(0,2,9) #9 numbers from 0 to 2
array([0.,0.25,0.5,0.75,1.,1.25,1.5,1.75,2.1]) >>> x =
np.linspace (0,2*pi, 100) #useful to

evaluate function at lots of points
>>> f = np.sin(x)

7.1.2 Menampilkan Array

Saat kita menampilkan array , NumPy menampilkannya dengan cara
yang mirip dengan daftar bersarang, namun dengan tata letak berikut:

« axis terakhir dicetak dari kiri ke kanan,

» yang kedua sampai yang terakhir dicetak dari atas ke bawah,

« Sisanya juga dicetak dari atas ke bawah, dengan masing-
masing potongan dipisahkan oleh sebuah baris kosong.

array satu dimensi dicetak sebagai baris, array dua dimensi sebagai
matriks dan tridimensionals sebagai daftar matriks.

>>> a = np.arange(6) #1d array
>>> print (a)

[01 23 4 5]
>>>
>>> b = np.arange(1l2) .reshape(4,3) # 2d array
>>> print (b)

[[01 2]

[3 45]

[6 7 8]

[910 11]]
>>> ¢ = np.arange (24) .reshape(2,3,4) ’'’’3d

array’’’

>>> print (c)
[(r(ro12 3]
[456 7]
[89 10 11]
[12 13 14 15
[16 17 18 19
[20 21 22 23

]
[]
]
111
Jika a rray terlalu besar untuk ditampilkan, NumPy secara otomatis

memotong bagian tengah array dan hanya mencetak ujung-ujungnya:
36

>>> print (np.arange (10000))

[01 2 ..., 9997 9998 9999]
>>>
>>> print (np.arange (10000) .reshape (100,100))
[[012 ..., 97 98 99]
[100 101 102 ..., 197 198 199]
[200 201 202 ..., 297 298 299]
000
[9700 9701 9702 ..., 9797 9798 9799]
[9800 9801 9802 ..., 9897 9898 9899]

[9900 9901 9902 ..., 9997 9998 9999]]

Untuk memaksa NumPy mencetak seluruh bagian array , kita dapat
mengubah opsi print menggunakan set_printoptions .

>>> np.set printoptions(threshold=’'nan’)
7.2 Operasi-operasi Dasar pada NumPy

Operator aritmatika pada array menggunakan aturan elementwise,
yaitu operasi diterapkan elemen per elemen. Sebuah array baru dibuat
dan diisi dengan hasilnya.

>>> a = np.array([20,30,40,50])
>>> b = np.arange(4)

>>> b

array ([0, 1, 2, 3])
>>> ¢ = a-b

>>> ¢

array ([20, 29, 38, 47])
>>> b**2

array ([0, 1, 4, 91)

>>> 10*np.sin(a)

array ([9.12945251, -9.88031624, 7.4511316 , -
2.623748547)

>>> a<35

array ([True, True, False , False], dtype=bool)

Tidak seperti dalam banyak bahasa matriks, operator kali *
mengoperasikan perkalian elemen per elemen antar array NumPy.
Sedangkan perkalian matriks dapat dilakukan dengan menggunakan
fungsi dot atau cara sebagaimana berikut:

>>> A = np.array([[1,1],[0,1]])

>>> B = np.array([[2,0],([3,41])
>>> A*B # elementwise product

37

array([[2, 0], [0, 411)

>>> A.dot (B) # matrix product

array ([[5, 41, [3, 411)

>>> np.dot (A, B) # another matrix product
array ([[5, 41, [3, 411)

Beberapa operasi, seperti + = dan * =, berguna untuk memodifikasi
array yang ada bukan untuk membuat yang baru.

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3

>>> 3

array([[3, 3, 31, [3, 3, 311)
>>> b += a
>>> b
array([[3.417022,3.72032449,3.0001143771,
[3.30233257,3.14675589,3.0923385911])
>>> a += b # b is not automatically converted
to integer type Traceback (most recent call
last) :

TypeError: Cannot cast ufunc add output from
dtype (' float64’) to dtype(’int64’) with
casting rule ’same_kind’

Ketika mengoperasikan array dari berbagai tipe, tipe yang dihasilkan
adalah tipe yang lebih umum (perilaku ini dikenal sebagai upcasting).

>>> a = np.ones (3, dtype=np.int32)

>>> b = np.linspace(0,pi, 3)

>>> b.dtype.name

"float64’

>>> c = atb

>>> ¢

array ([1. , 2.57079633, 4.14159265])

>>> c.dtype.name

"float64’

>>> d = np.exp(c*lj)

>>> d

array ([0.54030231+0.841470987,
-0.84147098+0.540302317,
-0.54030231-0.8414709831)

>>> d.dtype.name

"complex128’

Operasi yang tidak biasa, seperti menghitung jumlah semua elemen
dalam array, diimplementasikan sebagai kelas ndarray .

38

>>> a = np.random.random((2,3))

>>> 3

array([[0.18626021, 0.34556073, 0.39676747],
[0.53881673, 0.41919451, 0.6852195 11)

>>> a.sum()

2.5718191614547998

>>> a.min ()

0.1862602113776709

>>> a.max ()

0.6852195003967595

Secara default, operasi yang diberlakukan pada array adalah seperti
pada list yang berisi bilangan, terlepas dari bentuknya. Namun,
dengan menentukan parameter sumbu, Anda dapat menerapkan
operasi sepanjang sumbu yang ditentukan dari sebuah array:

>>> b = np.arange (12) .reshape(3,4)

>>> b
array([[0, 1, 2, 31,
[4, 5, 6, 71,
[8 9, 10, 1111)

>>> b.sum(axis=0) # sum of each column
array([1l2, 15, 18, 211)
>>> b.min (axis=1) # min of each row
array ([0, 4, 8])
>>> b.cumsum(axis=1) # cumulative sum along
each row
array([[O, 1, 3, 6],
[4, 9, 15, 22],
[8, 17, 27, 38]11])

7.3 Fungsi Universal

NumPy menyediakan fungsi matematika yang familiar seperti sin,
cos, dan exp. Dalam NumPy, ini disebut "fungsi universal™ (ufunc).
Dalam NumPy, fungsi ini beroperasi secara elementer pada array,
menghasilkan array sebagai output.

>>> B = np.arange (3)

>>> B

array ([0, 1, 2])

>>> np.exp (B)

array([1. , 2.71828183, 7.3890561 1)
>>> np.sqrt (B)

array([0. , 1. , 1.41421356])

>>> C = np.array([2., -1., 4.1)

39

>>> np.add (B, C)

array([2., 0., 6.1])

Coba juga: all, any, apply_along_axis, argmax, argmin, argsort,
average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod,
cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum, mean,
median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum,
trace, transpose, var, vdot, vectorize, where.

7.4 Indexing, Slicing and Iterating

Avrray satu-dimensi dapat diindeks, diiris dan diiterasi, seperti list dan
jenis barisan lain pada Python.

>>> a = np.arange (10)**3

>>> a

array ([O, 1, 8, 27, 64, 125, 216, 343,
512, 729])

>>> al2]

8

>>> a[2:5]
array ([8, 27, 641)
>>> a[:6:2] = -1000 # equivalent to a[0:6:2] =
-1000; from start to position 6, exclusive,
set every 2nd element to -1000
>>> 3
array([-1000, 1, -1000, 27, -1000, 125, 216,
343, 512, 7291)
>>> a[: :-1] # reversed a
array ([729, 512, 343, 216, 125, -1000, 27,
-1000, 1, -10007)
>>> for i1 in a:
print (i** (1/3.))
nan
1.0
nan
3.0

nan

O O ~J o
O O O o

40

Array multidimensi dapat memiliki satu indeks per axis. Indeks ini
diberikan dalam tuple yang dipisahkan koma:

>>> def f(x,y):
5o return 10*x+y

>>> b = np.fromfunction (£, (5,4),dtype=int)

>>> b
array([[O, 1, 2, 31,
[ro, 11, 12, 131,
[20, 21, 22, 231,
[30, 31, 32, 331,
[40, 41, 42, 4311)
>>> b[2,3]
23
>>> pb[0:5, 1] # each row in the second column
of b
array ([1, 11, 21, 31, 411])
>>> b[: ,1] # equivalent to the previous
example
array ([1, 11, 21, 31, 411])
>>> b[1l:3, :] # each column in the second and

third row of b

array([[1l0, 11, 12, 137,
(20, 21, 22, 2311)

Jika banyak indeks yang dimasukkan lebih sedikit dari dimensi array,
maka indeks yang tidak ditulis dianggap sebagai irisan lengkap:
>>> b[-1] # the last row. Equivalent to b[-1,:]
array ([40, 41, 42, 43])
Ekspresi dengan tanda kurung dalam b[i] dianggap sebagai i diikuti
oleh ‘:” yang diperlukan untuk mewakili dimensi yang tersisa. NumPy
juga membolehkan kita untuk menulis ini menggunakan titik sebagai

b[i, ...].
Titik-titik (...) mewakili banyak titik dua yang diperlukan untuk

menghasilkan pasangan pengindeksan yang lengkap. Misalnya, jika x
adalah array 5 dimensi, maka

* X[1,2,..] ekivalen dengan x[1,2,:,:,:] ,
e X[...,3] sampai x[:,:,:,:,3] dan
o X[4,...,5,:] sampai x[4,,:,5,:].

41

>>> ¢ = np.array([[[0, 1, 2], # a 3D array
(two stacked 2D arrays)

[10, 12, 13]]

[[100,101,102],

[110,112,113]1]

’

1)
>>> c.shape
(2, 2, 3)
>>> c[1l,...] # same as c[1l,:,:] or c[1]
array ([[100, 101, 102],

[110, 112, 113]11])
>>> c[...,2] # same as c[:,:,2]
array([[2, 13],

[102, 11311])

Iterasi atas array multidimensi dilakukan sehubungan dengan sumbu
pertama:

>>> for row in b:
print (row)

012 3]

[10 11 12 13
[20 21 22 23
[30 31 32 33
[40 41 42 43

Namun, jika seseorang ingin melakukan operasi pada setiap elemen
dalam array, kita dapat menggunakan atribut datar yang merupakan
iterator atas semua elemen dari array:

>>> for element in b.flat:
print (element)

N~ O

11
12
13
20
21
22
23
30
31
32

42

33
40
41
42
43

7.5 Mengubah bentuk sebuah array

Array memiliki bentuk yang diberikan oleh jumlah elemen sepanjang
masing-masing sumbu:

>>> a = np.floor (10*np.random.random((3,4)))

>>> 3

array([[2., 8., 0., 6.1,
[4oy 56p Loy Lolly,
[8., 9., 3., 6.11)

>>> a.shape
(3, 4)

Bentuk array bisa diubah dengan berbagai perintah. Perhatikan bahwa
tiga perintah berikut semua mengembalikan array yang dimodifikasi,
namun jangan mengubah array aslinya:
>>> a.ravel () # returns the array , flattened
array([2., 8., 0., 6., 4., 5., 1., 1., 8., 9.,

3., 6.1)

>>> a.reshape(6,2) # returns the array with a modified
shape

w o R s OoON

>>> a.T # r
array ([

ot

e array , transposed

PP O s Cc oo 0oy o

[2-
[8.
[O.
[6.

2
8
0
6
h

@

BN o~~~

>>> a.T.s
(4, 3)
>>> a.shape
(3, 4)

a

Urutan elemen dalam array yang dihasilkan dari ravel () biasanya "C-
style", yaitu indeks paling kanan "berubah paling cepat", jadi elemen

43

setelah [0,0] adalah [0,1] . Jika array dibentuk kembali ke bentuk lain,
lagi-lagi array diperlakukan sebagai "Gaya C". NumPy biasanya
membuat array yang tersimpan dalam urutan ini, jadi ravel() biasanya
tidak perlu menyalin argumennya, tapi jika array dibuat dengan
mengambil irisan array lain atau dibuat dengan opsi yang tidak biasa,
mungkin perlu disalin. Fungsi ravel () dan reshape () juga dapat
diinstruksikan, dengan menggunakan argumen opsional, untuk
menggunakan array gaya FORTRAN, di mana indeks paling Kiri
berubah paling cepat.

Fungsi reshape mengembalikan argumennya dengan bentuk yang
dimodifikasi, sedangkan metode ndarray.resize memodifikasi array
itu sendiri:

>>> a

array([[2., 8., 0., 6.1,
[4., 5., 1., 1.1,
[8., 9., 3., 6.11)

>>> a.resize((2,6))

>>> a

array([[2., 8., 0., 6., 4., 5.1,
[1., 1., 8., 9., 3., 6.11)

Jika dimensi diberikan sebagai -1 dalam operasi pengubah ukuran,

dimensi lainnya dihitung secara otomatis:

>>> a.reshape (3,-1)

array([[2., 8., 0., 6.1,
[4., 5., 1., 1.1,
[8., 9., 3., 6.11)

7.6 Menumpuk bersama array yang berbeda

Beberapa array dapat ditumpuk bersama-sama di sepanjang sumbu
yang berbeda:

>>> a = np.floor (10*np.random.random((2,2)))

>>> a
array ([[8., 8.1,
[0., 0.11)
>>> b = np.floor (10*np.random.random((2,2)))
>>> b
array ([[1., 8.1,

44

[0.,
>>> np.vstack
array ([[8.,

[O'l

[1.,

[0.,
>>> np.hstack
array ([[8.,

[0.,

o —

(

[Y (i

S oS N N N

(
']l
11

O 0~ i 00O 0~ i
~ ~

o~ 0 -

~ N~ —

NS

Fungsi column_stack menumpuk array 1D sebagai kolom menjadi
array 2D. Ini setara dengan vstack hanya untuk array 1D:

>>> from numpy import newaxis
>>> np.column stack((a,b)) # With 2D arrays

array([[8., 8., 1., 8.1,

[0., 0., 0., 4.11)
>>> a = np.array([4.,2.])
>>> b = np.array([2.,8.])

>>> al:,newaxis] # ThlS allows to have a 2D
columns vector
array ([[4.1,
[2.11)
>>> np.column stack((a[:,newaxis],b[:,newaxis]))
array([[4., 2.1,
[2., 8.11)
>>> np.vstack((a[:,newaxis],b[:,newaxis]))
The behavior of vstack is different
array ([[4.]

[2.1,
[8.1]

o NN

)

Untuk array dengan lebih dari dua dimensi, tumpukan hstack di
sepanjang sumbu kedua mereka, tumpukan vstack di sepanjang
sumbu pertama mereka, dan concatenate memungkinkan sebuah
argumen opsional yang memberi jumlah sumbu yang dengannya
penggabungan tersebut harus terjadi.

Catatan

Dalam kasus kompleks, r_ dan ¢_ berguna untuk membuat array
dengan menumpuk angka sepanjang satu sumbu. Mereka
mengizinkan penggunaan literal jangkauan (*':")

>>> np.r [1:4,0,4]

45

array([1, 2, 3, 0, 4])

Bila digunakan dengan array sebagai argumen, r_dan ¢_ mirip dengan
vstack dan hstack dalam perilaku default mereka, namun izinkanlah
argumen opsional yang memberi jumlah sumbu untuk
menggabungkannya.

7.7 Memecah Array Menjadi Beberapa Bagian yang
Lebih Kecil

Dengan menggunakan hsplit, Anda dapat membagi sebuah array di
sepanjang sumbu horisontalnya, dengan menentukan jumlah array
berbentuk sama untuk kembali, atau dengan menentukan kolom
setelah pembagian tersebut terjadi:

>>> a = np.floor (10*np.random.random((2,12)))

>>> a
array([[9., 5., 6., 3., 6., 8., 0., 7., 9.,
Voo 2og Toly
(1., 4., 9., 2., 2., 1., 0., 6., 2.,
2., 4., 0.11)
>>> np.hsplit(a,3) # Split a into 3
[array ([[9., 5., 6., 3.1,
[1., 4., 9., 2.11),
array([[6., 8., 0., 7.1,
[2., 1., 0., 6.11),
array ([[9., 7., 2., 7.1,
[2., 2., 4., 0.1])]
>>> np.hsplit(a, (3,4)) # Split a after the
third and the fourth column
[array([[9., 5., 6.1,
[1., 4., 9.11),
array ([[3.1,
[2.11),
array([[6., 8., 0., 7., 9., 7., 2., 7.1,
[2., 1., 0., 6., 2., 2., 4., 0.11)1

vsplit terbagi sepanjang sumbu vertikal, dan array_split
memungkinkan seseorang untuk menentukan sepanjang sumbu mana
yang akan dipecah.

46

7.8 Menyalin dan menampilkan

Saat mengoperasikan dan memanipulasi array, datanya terkadang
disalin ke array baru dan terkadang tidak. Ini sering menjadi sumber
kebingungan bagi pemula. Ada tiga kasus: Jangan menyalin
semuanya, lihat atau salin dangkal, dan deep copy.

Jangan menyalin semuanya

Tugas sederhana tidak membuat salinan objek array atau datanya.

>>> a = np.arange (12)

>>> b = a # no new object is created

>>> b is a # a and b are two names for the same
ndarray object True

>>> b.shape = 3,4 # changes the shape of a

>>> a.shape

(3, 4)

Python melewati objek yang bisa berubah sebagai referensi, jadi
pemanggilan fungsi tidak membuat salinan.

>>> def f(x):
print (id(x))

>>> id(a) # i1id is a unique identifier of an
object

148293216

>>> f(a)

148293216

Lihat atau Salin Dangkal

Objek array yang berbeda dapat berbagi data yang sama. Metode view
menciptakan objek array baru yang melihat data yang sama.

>>> c = a.view()

>>> c is a

False

>>> c.base is a # c is a view of the data owned
by a True

>>> c.flags.owndata

False

>>> c.shape = 2,6 # a’s shape doesn’t change

>>> a.shape

(3, 4)

47

>>> c[0,4] = 1234 # a’s data changes

>>> a

array ([[o, 1, 2, 31,
[1234, 5, 6, 71,
[8, 9, 10, 1111)

Slicing sebuah array mengembalikan pandangannya:

>>> s = a[: , 1:3] # spaces added for clarity;
could also be written "s = a[:,1:3]"

>>> s[:] = 10 # s[:] is a view of s. Note the
difference between s=10 and s[:]1=10

>>> a

array ([[0, 10, 10, 3]

[1234, 10, 10, 71,
r 8, 10, 10, 1111)

Deep Copy

Metode copy membuat salinan lengkap dari array dan datanya.

>>> d = a.copy() # a new array object with new
data is created
>>> d is a
False
>>> d.base is a # d doesn’t share anything
with a
False
>>> d[0,0] = 9999
>>> a
array ([[0, 10, 10, 31,
[1234, 10, 10, 71,
[8, 10, 10, 11]1)

7.9 Aljabar Linier

Operasi-operasi Array

>>> import numpy as np
>>> a = np.array([[1.0, 2.0], [3.0, 4.011)
>>> print (a)

[[1. 2.]

[3. 4.1]
>>> a.transpose()
array ([[1., 3.1,

[2., 4.1]1)
>>> np.linalg.inv(a)

array([[-2. , 1. 1,
[1.5, -0.511)
>>> u = np.eye(2) # unit 2x2 matrix; "eye"
represents "I"
>>> 1
array([[1., 0.1,
[0., 1.11)
>>> j = np.array([[0.0, -1.0], [1.0, 0.0]1)
>>> np.dot(j, Jj) # matrix product
array([[-1., 0.1,
[0., -1.11)
>>> np.trace(u) # trace 2.0
>>> y = np.array([[5.]1, [7.1])
>>> np.linalg.solve(a, V)
array ([[-3.1,
[4.11)
>>> np.linalg.eig(j)
(array ([0.+1.5,0.-1.31),
array([[0.70710678+0.3, 0.70710678-0.31,
[0.00000000-0.707106787,
0.00000000+0.70710678311))

7.10 Automatic Reshaping

Untuk mengubah dimensi array, Anda dapat menghilangkan salah
satu ukuran yang kemudian akan disimpulkan secara otomatis:

>>> a = np.arange (30)

>>> a.shape = 2,-1,3 # -1 means "whatever is
needed"

>>> a.shape (2, 5, 3)

>>> a

array ([[1,

0, 2l
3! 4! 5]/
6! 7! 8]/
9, 10, 111,
2, 13, 1411,
5, 16, 171,
8, 19, 20],
1, 22, 231,
4, 25, 261,
7, 28, 29111)

7.11 Penumpukan Vektor

Membentuk array 2D dari beberapa vektor baris di MATLAB dapat
dilakukan dengan cara yang cukup mudah, jika x dan y adalah dua

49

vektor dengan panjang yang sama, kita hanya perlu menuliskan m =
[x; y].

Dalam NumPy hal tersebut dapat dilakukan dengan menggunakan
fungsi column_stack, dstack, hstack dan vstack , tergantung pada
dimensi array yang dikehendaki. Sebagai contoh:

x = np.arange(0,10,2) # x=([0,2,4,6,8])
y = np.arange(5) # y=([0,1,2,3,4])

m = np.vstack([x,y]) # m=([[0,2,4,6,8],
00,1,2,3,411)

xy = np.hstack([x,y])

xy =([(0,2,4,6,8,0,1,2,3,4])

50

51

BAB 8
LIBRARY SYMPY
8.1 Pengantar SymPy

SymPy sangat berguna dalam melakukan perhitungan sains di Python,
seperti integral, turunan, interpolasi, limit, fungsi-fungsi transenden
dan lain sebagainya.

Sebagai contoh lihat perbedaan perhitungan antara

\ 9 dan v 8 menggu nakan modul math dan sympy,

import math as mt
import sympy as sy

a = mt.sqgrt (9)
b = sy.sqgrt(9)
c = mt.sqgrt(8)
d sy.sqrt (8)
print (a,b)
print(c,d)

Print out dari kode Python diatas adalah

3.0 3

2.8284271247461903 2*sqrt (2)

Jika menggunakan modul math nilai dari \ 8 =2.82..., sedangkan jika
menggunaan modul sympy nilai yang ditampilkan adalah 2 v 2.

Pada SymPy variabel didefinisikan dengan symbols, sebagai contoh
mari kita definisikan persamaan matematika x + 2y

from sympy import symbols
X,y = symbols('x y’)

expr = x + 2%y

print (expr)

print (expr-x)

print (expr**2)

Print out dari kode Python diatas adalah
X + 2%y

2%y
(x + 2%y) **2

52

Variabel yang didefinisikan dengan symbols juga dapat dioperasikan
dengan bilangan, sebagai contoh lihat kode berikut

expr

Out[7]: x + 2*y

expr+l

Out[8]: x + 2*y + 1

X*expr

Oout[9]: x*(x + 2%y)

SymPy dapat digunakan untuk menyederhanakan persamaan,
mengintegralkan, menurunkan, menghitung limitnya, menyelesaikan
persamaan, dan masih banyak lagi. Berikut ini beberapa contoh yang
dapat dilakukan menggunakan SymPy.

from sympy import symbols , expand , factor

X,y = symbols('x y')
expr = x + 2*y

pl = x*expr
p2 = expand(pl)
print ('expr = ’,expr)

print (‘pl =’',pl)
print ('p2 =',p2)

Print out dari kode Python diatas adalah:

expr = x + 2%y
pl = x*(x + 2*y)
P2 = x**2 + 2*x*y

Pada SymPy juga ada cara untuk mengubah tampilan dari Print out
menjadi lebih indah, lihat cara pemakaiannya pada contoh berikut

from sympy import *

X, t, 2z, nu = symbols('x t z nu’)
init printing(use unicode=True)

pl = sin (x) *exp (x)

p2 = diff (pl, x)

P3 = sin(x) *exp (x)texp (x) *cos (x)

p4 = integrate (p3,x)

p5 = integrate(sin(x**2), (x,-00,00))

Selanjutnya pada console dapat kita ketikkan p1, p2, p3, p4, ataupun
p5 untuk melihat hasil dari kode Python diatas.

53

In [35]: pl,p2
Out[35]:

(e"sin(x), €"sin(z) +e” cos (x))

In [36]: p3,p4,p5
Out[36]:

V2y7T
2

e*sin (z) + e* cos (x), e"sin(x),

Gambar 8.1. Hasil print out SymPy dengan tampilan Unicode

Beberapa fungsi bawaan SymPy yang bisa digunakan diantaranya
adalah:

limit limit(sin(x)/x, X, 0)

solve solve(x**2-2, x)

dsolve y = Function(’y’)
dsolve(Eq(y(t)*diff(t,t)-y(t).exp(t)), y(1))

simplify simplify(sin(x)**2+cos(x)**2)

54

In [44]: (x+1)**3
Out[44]:

(:r+1}3

In [45]: expand(In[44])
Out[45]:

23+ 322 +3x+1

In [46]: expand((x+2)*(x-3))
Out[46]:

:1.'2—1.'—6

In [47]: factor(x**3-x**2+x-1)
Out[47]:

(x —1) (:1?2 +1)

In [48]: simplify(cos(x)**2+sin(x)**2)
Out[48]:

1

Gambar 8.2. Contoh penggunaan beberapa fungsi di SymPy

BAB 9
PEMROGRAMAN BERBASIS OBJEK DENGAN
PYTHON

9.1 Konsep Class dan Objek
9.1.1 Paradigma Pemrograman Berbasis Objek

Ada beberapa pendekatan atau paradigma yang dapat digunakan
dalam membuat program komputer, diantaranya yaitu pemrograman
prosedural dan pemrograman berbasis objek. Pemrograman
procedural dilakukan dengan menyusun program seperti resep dalam
bentuk perintah yang berurutan untuk menyelesaikan tugas. Program
dalam paradigma ini berdasarkan pada struktur informasi di dalam
memori dan manipulasi dari informasi yang disimpan tersebut.
Sedangkan pemrograman berorientasi objek merupakan paradigma
pemrograman yang berorientasikan kepada objek di mana semua data
dan fungsi di dalam paradigma ini dibungkus dalam kelas atau objek.
Setiap objek dapat menerima pesan, memproses data, dan mengirim
pesan ke objek lainnya.

Karena Python adalah bahasa pemrograman multi-paradigma, Anda
dapat memilih paradigma yang paling sesuai dengan masalah yang
ada, menggabungkan paradigma yang berbeda dalam satu program,
dan / atau beralih dari satu paradigma ke paradigma lain saat program
Anda berkembang.

Sebuah objek memiliki 2 karakteristik:

e Data atau informasi (attribute)
e Perilaku (method)

Misalnya: Mobil adalah sebuah objek sehingga dapat memiliki
informasi merk, warna, jenis, tahun dan dapat berperilaku berjalan
maju, berjalan maju, direm, dan lain-lain.

56

Konsep pemrograman berbasis objek berfokus pada pembuatan
program yang dapat digunakan berkali-kali atau biasa disebut dengan
DRY (Don't Repeat Yourself). Prinsip dasar pemrograman berbasis
objek adalah:

Encapsulation: Menyembunyikan informasi dari objek yang lain
sehingga hanya bisa diakses melalui method yang telah
dideskripsikan.

Inheritance: Proses menggunakan detil dari kelas baru tanpa
melakukan perubahan pada kelas yang sudah ada. Pewarisan sifat
pada kelas/objek turunannya.

Polymorphism: Konsep dalam menggunakan operasi atau method
yang sama dengan cara yang berbeda untuk data input yang berbeda.
Misalnya mengitung luas bidang segitiga dan lingkaran akan
menjalankan method yang sama tapi rumusnya berbeda.

9.1.2 Kelas (Class)

Sebuah kelas adalah cetak biru (blueprint) dari objek. Kelas
merupakan konsep atau deskripsi dari entitas yang menggambarkan
objek. Misalnya kita ingin membuat objek bank account (rekening
bank), maka kita membutuhkan deskripsi entitas bank account
tersebut secara umum. Sehingga kelas tersebut dapat berisi detil
informasi dari account, seperti nomor rekening (humber), saldo
(balance), dan pemilik rekening (account holder), serta dapat
memiliki beberapa perilaku atau fungsi misalnya deposit, penarikan,
dan transfer.

Contoh mendefinisikan kelas Account tanpa atribut dan method
(ditandai dengan keyword pass) adalah sebagai berikut:

class Account:
pass

Kita gunakan keyword c1ass untuk mendefinisikan sebuah kelas. Kita
dapat membuat objek spesifik dari kelas yang sudah didefinisikan,

57

proses pembuatan objek dari kelas ini biasa disebut proses instansiasi
objek. Objek tidak dapat diinstansiasi tanpa adanya kelas.

9.1.3 Objek

Jika class adalah cetakan, maka sebuah objek adalah
salinan class dengan nilai sebenarnya. Secara harfiah, objek
merupakan milik class tertentu dan bukan konsep lagi namun sudah
menjadi objek yang sebenarnya, contohnya sebuah rekening Bank
Sukakaya dengan nomor rekening 12345 pemiliknya adalah Siti
dengan saldo sebesar 1 juta.

Cara melakukan instansiasi objek adalah seperti berikut:
>>> x = Account ()

Jika kita cek variabel x, maka akan diberikan informasi bahwa
variabel tersebut adalah objek dari kelas account.

>>> x
< _ main__.Account object at 0x1004ccc90>
9.14 Method

Method adalah perilaku atau fungsi yang dapat dilakukan oleh objek.
Di Python, method didefinisikan seperti pendefinisian fungsi, namun
ada beberapa perbedaan, yaitu:

o Method dimiliki oleh kelas atau objek dan harus didefinisikan di
dalam kelas.

e Minimal harus ada satu parameter dalam method, yaitu seif
yang merujuk kepada instansiasi objek dari kelas tersebut.
Parameter se1r selalu menjadi parameter yang pertama.

e Pada saat memanggil method, tidak perlu memberikan argumen
untuk parameter seif.

Berikut ini contoh beberapa definisi method pada kelas account,
sementara kita definisikan pass untuk isi dari masing-masing method,
yang artinya tidak melakukan apa-apa.

58

class Account:
Method
def transfer(self, target, amount):
pass
def deposit(self, amount):
pass
def withdraw(self, amount) :
pass
def setBalance(self, balance) :
pass
def getBalance (self):
pass
Pembahasan selanjutnya akan kita ganti definisi method yang berisi

pass di atas.
9.1.5 Instance Attributes

Semua objek harus dibuat dari kelas dan semua objek mengandung
karakteristik yang disebut atribut dan beberapa perilaku atau
fungsionalitas yang disebut method. Atribut yang dimiliki oleh setiap
objek hasil instansiasi kelas disebut instance attributes, nilai instance
attribute antara satu objek dengan objek lainnya dalam satu kelas bisa
berbeda.

Kita dapat menggunakan constructor method __init__ () untuk
melakukan inisialisasi atribut dari objek dengan memberikan nilai
default kepada atribut tersebut. Constructor method adalah method
default yang secara otomatis akan dijalankan ketika kita melakukan
instansiasi objek.
Initializer / Instance Attributes
def init (self, holder, number,
balance=0) :
self.holder = holder
self.number = number
self.balance = balance
Kelas lengkapnya setelah ditambahkan constructor dan definisi dari
setiap method adalah seperti berikut (ganti keyword pass menjadi
instruksi berikut):

class Account:

59

Initializer / Instance Attributes
def init (self, holder, number,
balance = 0):
self.holder = holder
self.number = number
self.setBalance (balance)

Method
def deposit(self, amount):
self.balance += amount

def transfer(self, target, amount):

if (self.balance - amount < 0):
Insufficient funds
return False

else:
self.balance -= amount
target.balance += amount
return True

def withdraw(self, amount) :
if (self.balance - amount < 0):
Insufficient funds
return False
else:
self.balance -= amount
return True

def setBalance(self, balance):
self.balance = balance

def getBalance (self):
return self.balance

Cara melakukan instansiasi objek dari kelas account sekarang
menjadi:
>>> al = Account ("Bill Gates",345267,13000)
>>> al.getBalance ()
13000
Nilai instance attribute otomatis diinisialisasi ketika proses
instansiasi sesuai data yang diberikan. Perhatikan jika kita tidak
memberikan argument untuk parameter balance, maka nilai default 0
akan diberikan pada atribut balance.

60

>>> al = Account ("Bill Gates",345267)
>>> al.getBalance ()
0

9.1.6 Class Attribute

Di sisi lain, class attribute menempel pada semua objek dari kelas
tertentu dan memiliki nilai yang sama. Atribut ini dapat diakses dan
diubah oleh objek apa pun dari kelas tersebut.

Contoh penggunaan class attribute pada Account adalah dengan
menambahkan atribut counter jumlah objek rekening seperti berikut:

class Account:
Class Attributes (same for all Account instance)

counter = 0
Initializer / Instance Attributes
def init (self, holder, number, balance=0):

Account.counter += 1
self.holder = holder
self.number = number
self.balance = balance

Method

Setelah kita buat kelas account seperti di atas, kita coba buat instance
dan memanggil method-method-nya seperti berikut ini:

>>> al = Account ("Bill Gates",345267,13000)
>>> al.getBalance ()
13000

>>> a2 = Account ("Jack Ma",345289,3900)
>>> a2.getBalance ()

3900

>>> Account.counter

2

>>> al.transfer (a2, 1500)
True

>>> al.getBalance ()

11500

>>> az.getBalance ()

5400

>>> a2.withdraw (1000)
True

>>> az.getBalance ()

4400

61

Latihan

1. Tambahkanlah kelas aAccountholder yang mendeskripsikan
entitas pemegang rekening. Kelas tersebut menyimpan
informasi biodata pemegang rekening, yaitu nama lengkap
(surename), alamat (address), pekerjaan (profession), dan
tanggal lahir (birthday). Atribut nama, tanggal lahir, dan
pekerjaan harus diisi ketika melakukan pendaftaran. Terdapat
beberapa method dari kelas tersebut, yaitu merubah alamat
(setAddress), merubah pekerjaan (setProfession), mengambil
informasi nama (getName), mengambil informasi tanggal lahir
(getBirthday), mengambil informasi alamat (getAddress), dan
mengambil informasi pekerjaan (getProfession).

class AccountHolder:
Initializer / Instance Attributes

Method

2. Ubah holder pada kelas account sehingga merujuk pada kelas
AccountHolder Yang baru (buat contoh instansiasi objek
AccountHolder dan Account).

>>> personl = AccountHolder ("Bill Gates",

"28-10-1955", "CEO")
>>> # Lanjutkan

9.2 Encapsulation
9.2.1 Encapsulation

Kekurangan program Account pada kegiatan belajar sebelumnya
adalah setiap atribut dapat kita akses langsung dari objek dan kita juga

62

bisa mengganti nilainya secara leluasa sehingga integritas dan
kerahasiaan informasi objek tidak akan terjaga.

>>> al = Account ("Bill Gates",345267,13000)
>>> al.balance
13000

>>> al.balance += 2500

>>> al.balance

15500

Enkapsulasi adalah penyembuyian informasi class dan objek dari luar.
Konsep ini merupakan teknik yang membuat atribut class maupun
instance menjadi bersifat private dan menyediakan akses ke atribut
tersebut melalui method. Jika atribut di deklarasikan sebagai private,
maka atribut ini tidak bisa diakses oleh siapapun di luar class, dengan
demikian atribut disembunyikan di dalam class. Enkapsulasi secara
umum berkaitan dengan:

¢ Penyembunyian informasi (information hiding), dan
e Cara mengakses informasi private melalui method

9.2.2 Information Hiding

Kita bisa membatasi control akses dari atribut dengan
mendefinisikannya sebagai public, protected, atau private.

e Private: hanya bisa diakses dari kelas
e Protected: hanya bisa diakses dari kelas dan sub-kelasnya
e Public: dapat diakses oleh siapapun

Secara default, atribut yang didefinisikan di dalam kelas adalah atribut
public. Untuk mendefinisikannya sebagai private adalah dengan
menambahkan underscore dua kali () sebelum nama
variabel/atribut. Contoh: _ nholder, number, balance.
class Account:
Class Attributes (same for all Account instance)
__counter = 0
Initializer / Instance Attributes

def init (self, holder, number, balance=0):
Account. counter += 1

63

self. holder = holder
self. number = number
self. balance balance

Method
def deposit(self, amount):
self. balance += amount

def transfer(self, target, amount):
if(self. balance - amount < 0):
Insufficient funds
return False

else:
self. Dbalance -= amount
target.setBalance (target.getBalance () +
amount)
return True
#

Sekarang coba akses kembali atribut pada kelas Account tersebut
langsung dari instance objeknya, maka nama atribut yang sudah
private tidak akan dikenali.
>>> al = Account ("Bill Gates",345267,13000)
>>> al. Dbalance
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
al. balance

AttributeError: 'Account'’ object has no attribute
' balance'

9.2.3 Method Aksesor dan Mutator

Untuk mengakses atribut yang sudah dibuat menjadi private, harus
melalui method. Ada dua jenis method untuk keperluan ini, yaitu
method aksesor dan mutator. Method aksesor adalah method yang
digunakan untuk mengambil nilai sebuah atribut. Sedangkan method
mutator adalah method yang digunakan untuk memberikan nilai yang
baru ke atribut, sehingga membutuhkan adanya parameter nilai yang
akan diberikan. Kedua method ini biasa disebut method setter dan
getter, setter untuk mutator dan getter untuk aksesor.

64

Contohnya pada kelas Account, method setBalance ()

adalah

setter/mutator, dan method getBalance() adalah getter/aksesor.
Coba kita perbaiki kelas Account seperti berikut:

class Account:
Class Attributes (same for all Account instance)

~_counter = 0
Initializer / Instance Attributes

def init (self, holder, number, balance=0):

Account. counter += 1
self. holder = holder
self. number = number
self. balance = balance

Method
def deposit(self, amount):
self. Dbalance += amount

def transfer(self, target, amount):
if(self. balance - amount < 0):
Insufficient funds
return False
else:
self. Dbalance -= amount
target.setBalance (target.getBalance ()

amount)

65

return True

def withdraw(self, amount) :
if (self. balance - amount < 0):
Insufficient funds
return False
else:
self. Dbalance -= amount
return True

def setBalance(self, balance) :
self. Dbalance = balance

def getBalance (self):
return self. balance

Accessor method for class attribute
def getAccountCounter() :
return Account._ counter

Maka atribut yang sudah dirahasiakan hanya akan bisa diakses
melalui method setter atau getter.

>>> al = Account ("Bill Gates",345267,13000)
>>> al.getBalance ()

13000

Latihan

1. Dari kelas AccountHolder pada latihan Subbab sebelumnya,
tambahkan enkapsulasi pada kelas tersebut dengan membuat
setiap atributnya menjadi private dan hanya bisa diakses melaui
method setter dan getter. Setiap atribut bisa diambil
informasinya melalui method getter, tetapi hanya atribut alamat
(address) dan pekerjaan (profession) yang bisa diubah nilainya
(punya method setter).

class AccountHolder:
Initializer / Instance Attributes

Method

2. Buatdeskripsi kelas venhicle (kendaraan) yang mendeskripsikan
entitas kendaraan. Kelas tersebut menyimpan informasi jenis
kendaraan (types), nomor kendaraan (number), warna
(color), tahun (year), dan kapasitas penumpang (capacity
dalam kg). Atribut jenis kendaraan dan tahun harus diisi ketika
membuat objek kendaraan yang baru. Tambahkan enkapsulasi
pada kelas tersebut dengan membuat setiap atributnya menjadi
private dan hanya bisa diakses melaui method setter dan getter.
Setiap atribut bisa diambil informasinya melalui method getter,
tetapi hanya atribut nomor kendaraan, warna, dan kapasitas yang
bisa diubah nilainya (punya method setter). Kemudian buat
instansiasi objek baru dari kelas Vehicle tersebut dan tunjukkan
bahwa kita tidak dapat mengakses langsung setiap atributnya
tanpa melalui setter dan getter! Tambahkan method untuk
berjalan dan direm!

66

class Vehicle:
Initializer / Instance Attributes

Method
Method berjalan

Method direm

3. Buat deskripsi kelas point yang merepresentasikan sebuabh titik.
Sebuah titik mempunyai informasi koordinat 2 dimensi (X, y).
Jika diinstansiasikan sebuah objek titik baru tanpa inisialisasi
koordinat x dan y, maka default koordinatnya adalah (0,0). Buat
semua atributnya menjadi private dan hanya mempunyai method
getter saja. Tambahkan method untuk melakukan translasi
(perpindahan) titik, misalkan sebuah titik ditranslasikan (2,-1),
maka titik akan berpindah dua satuan ke arah sumbu x positif
dan 1 satuan ke arah sumbu y negatif.

class Point:
Initializer / Instance Attributes

Method

Method translasi
9.3 Inheritance
9.3.1 Konsep Inheritance

Konsep inheritance ini mengadopsi dunia nyata di mana suatu
entitas/objek dapat mempunyai entitas/objek turunan. Suatu kelas
yang mempunyai kelas turunan dinamakan parent class atau
superclass, sedangkan kelas turunan itu sendiri disebut child class
atau subclass. Suatu subclass dapat mewarisi apa-apa yang dimiliki
oleh parent class.

Pewarisan adalah keuntungan besar dalam pemrograman berbasis
objek karena suatu sifat atau method didefinisikan dalam superclass,

67

sifat ini secara otomatis diwariskan dari semua subclass. Jadi, Anda
dapat menuliskan kode method hanya sekali dan mereka dapat
digunakan oleh semua subclass. Subclass hanya perlu
mengimplementasikan perbedaannya sendiri dan induknya.

Deklarasi subclass dilakukan dengan cara extend kelas dari
superclass-nya, superclass dituliskan dalam tanda kurung setelah
nama subclass. Contoh konsep inheritance misalnya kita membuat
kelas baru Cat dan Fish dari sebuah kelas yang lebih umum yaitu kelas
Pet. Ketiganya memiliki beberapa kesamaan atribut dan method,
misalnya nama (name) dan warna (color).

Pet

- name: String

- color: String

+ getName()

+ setName(name)
+ getColor()

+ setName(name)
+ eating()

+ sleeping()

Cat Fish

- isSeaFish: boolean

+ meowing() + swimming()

Gambar 9.1. Contoh class diagram inheritance

Superclass Pet
class Pet:
def init (self, name='no name', color='no color'):
self. name = name
self. color = color

def getName (self):
return self. name

68

def setName (self, name):
self. name = name

def getColor (self):
return self. color

def setColor(self, color):
self. color = color

def eating(self):
print (self.getName ()+" is eating")

def sleeping(self):
print (self.getName()+" is sleeping")

Subclass Cat
class Cat (Pet) :
pass # Definisi subclass Cat dikosongi dulu

Subclass Fish
class Fish (Pet):

pass # Definisi subclass Fish dikosongi dulu
Subclass cat dan rish akan memiliki atribut dan method yang sama
dengan kelas pet. Coba buat objek baru dari kelas cat dan rish
kemudian panggil setiap method-nya.

9.3.2 Atribut dan Method Spesifik pada Subclass

Superclass adalah class yang sifatnya umum, semua atribut dan
method-nya akan diturunkan pada subclass. Subclass adalah kelas
yang lebih spesifik, sehingga kita dapat menambahkan atribut dan
atau method yang membedakannya dengan subclass yang lain.
Misalkan pada kelas Fish kita tambahkan informasi apakah hidup di
air laut atau tidak (issearish) dengan tipe data boolean dan method
swimming (), Sedangkan pada kelas Cat kita tambahkan method

meowing () .
Kita dapat menambahkan spesifik atribut dengan membuat
constructor method subclass yang di dalamnya memanggil

constructor dari superclass dengan bantuan fungsi super (). Fungsi
super () adalah fungsi yang digunakan untuk memanggil method

69

superclass dari subclass-nya. Biasanya berguna ketika kita ingin
mendefinisikan isi method yang baru dari method yang sudah ada di
superclass (overriding method).

Subclass Fish

class Fish (Pet):
Contructor class Fish dengan tambahan atribut baru

def init (self, name='no name', color='no color',
seaFish=True) :
super (). init (name, color) # init method
superclass

self. isSeaFish = seaFish

Getter isSeaFish mengembalikan habitat Fish
def getHabitat (self):
if self. isSeaFish:
return "sea"
else:
return "freshwater"
Setter atribut isSeaFish
def setIsSeaFish(self, seaFish):
self. isSeaFish = seaFish

Method swimming
def swimming(self):
print (self.getName ()+" is swimming in the "4
self.getHabitat ())

Coba buat objek baru dari kelas rish dan panggil setiap method-nya.

Subclass Cat
class Cat (Pet) :
Method meowing
def meowing (self):
print (self.getName () +" say meow!!")

Coba buat objek baru dari kelas cat dan panggil method meowing ().
9.3.3 Overriding Method

Sudah dijelaskan sebelumnya bahwa salah satu kegunaan fungsi
super () adalah untuk melakukan pembaruan method di subclass atau
bisa disebut overriding method. Itu berarti kita mempunyai nama
method yang sama dengan superclass namun isinya berbeda, salah

70

satu contohnya adalah method init () pada kelas Fish yang
sudah kita buat di atas.

Contoh lain misalnya kita ingin memperbarui deskripsi method
eating () pada kelas Cat, dan method s1eeping () pada kelas Fish.

Subclass Fish
class Fish (Pet):
Contructor class Fish sama dengan sebelumnya

Setter dan Getter sama dengan sebelumnya

Overriding method sleeping
def sleeping(self):
print (self.getName ()+" is sleeping in the water")

Method swimming sama seperti sebelumnya

Subclass Cat
class Cat (Pet):
Overriding method eating
def eating(self):
print (self.getName ()+" is eating fish'")

Method swimming sama seperti sebelumnya

Coba buat objek baru dari kelas cat dan Fish kemudian panggil
method eating () dan sleeping ().

>>> nemo = Fish("Nemo Clownfish", "orange")
>>> tom = Cat ("Tom Cat", "gray")

>>> nemo.sleeping ()

Nemo Clownfish is sleeping in the water
>>> tom.sleeping ()

Tom Cat is sleeping

>>> nemo.eating()

Nemo Clownfish is eating

>>> tom.eating ()

Tom Cat is eating fish

71

Latihan

1. Dari kelas vehicie pada latihan Subbab sebelumnya, buatlah
subclass car dan Train. Car memiliki atribut tambahan jumlah
pintu (numboors) dan memiliki method turn() dengan
parameter “right” atau “left”. Kelas Train memiliki atribut
jumlah gerbong (numcarriage) dan ubah method untuk berjalan
sehingga menampilkan “kereta berjalan di atas rel”/“train
moving on the rail”.

2. Implementasikan inheritance pada class diagram berikut:

Mammal

- species: String

- age: integer

+ getSpecies()

+ setSpecies(species)

+getAge()
+ setAge(age)
+ eating()
Carnivor Herbivor
- food: Herbivor
+ getFood() + eating()
+ setFood(food)
- hunting()
+ eating()

Gambar 9.2. Class diagram Mammal

Jika dibuat instansiasi objek dan dipanggil method eating()
akan menghasilkan output seperti berikut:

72

>

>>> kambing = Herbivor ("sheep", 2)

>>> macan = Carnivor ("tiger"™, 5, kambing)
>>> kambing.eating()

sheep is eating grass

>>> macan.eating()

tiger 1s hunting and eating sheep

Gambar 9.3. Contoh output program dengan kelas Mammal

9.4 Polymorphism
9.4.1 Konsep Polymorphism

Polymorfisme adalah konsep pemrograman berbasis objek yang
memungkinkan adanya beberapa objek berbeda kelas mempunyai
method yang sama namun definisinya disesuaikan dengan kelas objek
tersebut. Konsep ini berkaitan dengan overriding method yang
dijelaskan pada praktikum sebelumnya. Konsep ini juga bisa
berkaitan dengan inheritance.

Penerapan polymorfisme pada Python sangat sederhana dibandingkan
bahasa pemrograman yang lainnya karena diterapkan dengan cara
“duck-typing”, yaitu setiap objek tinggal kita panggil method-nya
maka output akan langsung menyesuaikan dengan kelasnya.

Misalkan kita mempunyai himpunan objek binatang peliharaan yang
bisa berisi objek-objek dari cat dan rish. Kita tidak perlu
mengelompokkan secara terpisah antara objek-objek dari kelas Cat
dengan objek-objek dari kelas Fish, cukup kita tampung dalam satu
variabel bertipe data kolektif, misalnya list.

ListHewanPeliharaan: list

List[n
]: Cat

73

9.4.2 Polymorfisme dengan Object Method

Untuk menunjukkan bagaimana Python dapat melakukan
polimorfisme pada setiap objek yang berbeda kelas dengan cara
memanggil method yang sama. Pertama kita perlu membuat looping
(bisa dengan for loop) yang akan melakukan iterasi pada setiap objek
di dalam list, tuple, atau tipe data koleksi lainnya. Kemudian kita
dapat memanggil method tanpa mempertimbangkan dari kelas mana
objek tersebut berasal, method yang dipanggil adalah method yang
ada pada semua kelas atau polymorphic method.

>>> nemo = Fish("Nemo Clownfish", "orange')
>>> tom = Cat ("Tom Cat", "gray")
>>> for pet in
(nemo, tom, Fish ("Dori", "blue") ,Jerry ("Jerry", "brown")):
pet.sleeping ()
pet.eating()

Nemo Clownfish is sleeping in the water

Nemo Clownfish is eating

Tom Cat is sleeping

Tom Cat is eating fish

Dori is sleeping in the water

Dori is eating

Jerry is sleeping

Jerry 1is eating fish

Contoh ini menunjukkan bahwa Python memanggil method
sleeping () dan eating () tanpa mengecek terlebih dahulu kelas dari

objek.
9.4.3 Polymorfisme dengan Fungsi

Kita bisa juga membuat sebuah fungsi dengan parameter sebuah
objek, objek ini bisa dari kelas apapun yang memiliki sifat
polymorfisme.

Misalnya kita membuat sebuah fungsi petactivity() dengan
parameter sebuah objek (bisa Cat maupun Fish). Sehingga kita bisa
memberikan instansiasi objek apapun ketika memanggil fungsi
tersebut.

74

>>> def petActivity (pet):
pet.sleeping ()
pet.eating ()

Kemudian dari instansiasi objek nemo dan tom sebelumnya, kita dapat
menjalankan action dari masing-masing objek dengan menjalankan
fungsi petactivity () yang sama.

>>> petActivity (nemo)

Nemo Clownfish is sleeping in the water
Nemo Clownfish is eating

>>> petActivity (tom)
Tom Cat is sleeping
Tom Cat is eating fish

Latihan

1. Buat instansiasi beberapa objek (minimal 6 objek) dari kelas
Vehicle, Train, dan car yang disimpan dalam list atau tuple.
Kemudian panggil polymorphic method-nya menggunakan
looping! Bagaimanakah hasilnya? Tunjukkan!

2. Buat sebuah fungsi mammalactivity dengan parameter adalah
instansiasi ObjEk dari kelas Mammal, Herbivor, dan carnivor.
Fungsi tersebut memanggil polymorphic method dari kelas
Mammal dan turunannya. Kemudian buat beberapa instansiasi
objek (minimal 5) dari kelas-kelas tersebut dan panggil fungsi
mammalActivity dengan memberikan masing-masing objek
sebagai argumen! Bagaimanakan hasilnya? (Tunjukkan)

3. Tambahkan sebuah method verjalan pada kelas Mammal yang
menampilkan teks jenis spesies mamalia sedang berjalan.
Kemudian tunjukkan polimorfisme antara kelas venhicle dan
kelas Mmamma1 yang baru dengan cara object method maupun
dengan fungsi!

75

BAB 10
PEMROGRAMAN GUI DENGAN PYTHON DAN
PYQT5

10.1 Pengenalan GUI dengan PyQt5
10.1.1 Paradigma Pemrograman GUI

Jika sebelumnya kita hanya berkutat pada pembuatan program
menggunakan Command Line Interpreter (CLI), pada praktikum kali
ini kita akan membahas tentang bagaimana kita membuat Graphical
User Interface (GUI) di Python. Jika kita ingin membuat sebuah
aplikasi yang mudah digunakan oleh user, maka kita harus membuat
antarmuka yang interaktif dan menarik. Banyak toolkit yang
disediakan di Python untuk membantu kita membangun antarmuka
yang interaktif. Beberapa diantaranya adalah:

» Tkinter: termasuk ke dalam Tk package, merupakan standard
toolkit GUI di Python

* PyQt: satu paket dalam framework aplikasi Qt

* wxPython: termasuk ke dalam wxWidgets C++ library

Pada praktikum ini akan digunakan PyQt5 di mana dengan toolkit ini
kita dapat membuat sebuah antarmuka yang sangat menarik dan juga
dokumentasi PyQt5 ini sudah sangat bagus. Pembuatan GUI dengan
PyQt5 ini dipermudah dengan adanya QtDesigner di mana Kita tinggal
menambahkan komponen yang kita inginkan.

10.1.2 GUI dengan PyQt5

PyQt5 ini adalah sebuah GUI toolkit yang multiplatform, yang berisi
hampir 1000 kelas yang terbagi ke sekitar 38 modul, beberapa
diantaranya adalah:

* QtCore: berisi kelas-kelas utama, termasuk event loop dan
mekanisme signal dan slot pada Qt.

76

* QtGui: berisi kelas-kelas yang terkait sistem integrasi pada
window, event handling, grafik 2D, font dan teks.

* QtWidgets: berisi kelas-kelas yang menyediakan set elemen Ul
untuk membuat classic desktop-style interface, seperti button,
textfield, dll.

Untuk memulainya harus sudah terinstall lebih dulu toolkit PyQt5 di
komputer atau laptop. Pemrograman GUI tidak begitu berbeda dengan
pemrograman objek dengan CLI. Perbedaannya hanyalah
penggunaan toolkit dan programmer harus menyesuaikan pola dari
program yang sudah didesain oleh toolkit tersebut. Dengan kata lain
pemrograman GUI berarti pemrograman berbasis objek dengan
sebuah event-driven framework, atau aplikasi yang merespon
terhadap adanya event dari user. Misalnya jika user menekan sebuah
tombol, maka program akan melakukan suatu aksi. Programer yang
menentukan aksi apa yang akan dilakukan setiap ada event eksternal.

10.2 Membuat Window Awal

Perhatikan contoh program berikut:

import sys
from PyQt5 import QtWidgets

if name == " main ":
app = QOtWidgets.QApplication(sys.argv)
mainWindow = QtWidgets.QWidget ()
mainWindow.show ()
app.exec_ ()

Penjelasan dari program tersebut adalah sebagai berikut:

import sys: Sys merupakan sebuah modul yang perlu diimport ke
setiap program yang dibuat menggunakan PyQt karena kita akan
memanggil sys.argv pada saat menginstansiasi objek dari kelas
QApplication.

77

from PyQt5 import QtWidgets: untuk melakukan impor modul
QtWidgets.

app = QtWidgets.QApplication(sys.argv): adalah perintah untuk
menginstansiasi objek dari kelas QApplication, setiap program yang
ditulis menggunakan PyQt harus memiliki objek tersebut. Sys.argv
adalah kumpulan argumen yang diberikan kepada script Python.

mainWindow = QtWidgets.Qwidget():untuk membuat objek dari
kelas QWidget, dalam contoh tersebut objek diperankan sebagai
frame utama dari program yang kita buat.

mainWindow.show():untuk menampilkan frame utama beserta
kontrol-kontrol yang ada di dalmanya.

app.exec_(): merupakan pengulan utama dari aplikasi (main loop).
Form akan ditampilakn secara terus menerus sampai ada tindakan dari
user.

Program tersebut akan menampilkan sebuah window kosong seperti
berikut:

Gambar 10.1. Tampilan window kosong déngan PyQt5

78

Dari pada menggunakan pendekatan procedural seperti contoh di atas,
kita akan merubah antarmuka tersebut menggunakan pendekatan

berbasikan objek seperti berikut.
import sys
from PyQt5 import QtWidgets

class NewWindow (QtWidgets.QWidget) :
def init (self):
QtWidgets.QWidget. init (self)
self.setGeometry (200,200,400,200)
self.setWindowTitle ("Aplikasi GUI Sederhana")
self.show ()

if name == " main ":
app = QOtWidgets.QApplication(sys.argv)
mainWindow = NewWindow ()
app.exec_ ()

10.2.1 Kelas QWidget

Pada contoh sebelumnya kita dapat melihat bahwa instansiasi objek
dari kelas QWidget dapat menghasilkan sebuah window baru. Namun
kelas QWidget sebenarnya dalah kelas dasar (superclass) bagi semua
elemen Ul. Beberapa contoh kelas yang mewarisi kelas QWidget
adalah:

e QProgressBar
e QPushButton
e QCheckBox

e QScrollBar

o Il

Kelas QWidget juga mendefinisikan beberapa fungsi dasar yang
umum untuk semua widget.

e QWidget.geometry () dan
Qwidget.setgeometry(x, y, w, h)

e OQWidget.resize(w, h)

e OQWidget.setParent (parent)

79

e OQOWidget.setToolTip(str),
QWidget.setStatusTip(str)

e OWidget.setPalette(palette)

Mari kita coba membuat button pada window dengan contoh script
berikut:

import sys
from PyQt5 import QtWidgets

class NewWindow (QtWidgets.QWidget) :

__init (self):

QtWidgets.QWidget. init (self)

self.setup ()

def setup(self):
self.setGeometry(200,200,400,200)
self.setWindowTitle ("Aplikasi GUI Sederhana")
self.startBtn = StartBtn (self)
self.quitBtn = QuitBtn (self)
self.show ()

StartBtn (QtWidgets.QPushButton) :

>f init (self,parent):
QtWidgets.QPushButton. init (self,parent)
self.setText ("START")
self.move (20,160)

QuitBtn (QtWidgets.QPushButton) :

>f init (self,parent):
QtWidgets.QPushButton. init (self,parent)
self.setText ("EXIT")
self.move (150,160)

if name == " main ":
app = QOtWidgets.QApplication(sys.argv)
mainWindow = NewWindow ()
app.exec ()

Maka ketika dijalankan akan menampilkan window seperti berikut:

80

ece@ -Aplikasi GUI Sederhana

START EXIT |

Gambar 10.2. Tampilan window dengan dua buah button

10.3 Signal dan Slots

PyQt5 menggunakan mekanisme signal/slots untuk mendefinisikan
sebuah aksi ketika ada event yang terjadi. Sebuah signal akan
dikeluarkan ketika terjadi sebuah event tertentu. Widgets sudah
memiliki beberapa signal yang telah didefinisikan, namun kita juga
bisa menambahkan signal sendiri di dalam subclass widgets.

Beberapa signal pada elemen QPushButton adalah:

e (QPushButton.clicked
e QPushButton.pressed
e (QPushButton.released

Slot adalah sebuah fungsi yang akan dipanggil untuk merespon
sebuah signal. Widgets sudah memiliki slot yang telah didefinisikan,
namun Kita juga dapat secara mudah mendefinisikan slot kita sendiri.

Contoh program kita sebelumnya, tidak akan ada aksi apa-apa ketika
sebuah button diklik. Coba kita tambahkan sebuah signal/slot ketika
button Exit diklik. Maka signal yang digunakan adalah
QPushButton.clicked dan slot-nya adalah
QWidgets.gApp.quit (), di mana QtWidgets.gApp adalah
instance dari QApplication yang sedang berjalan.

81

ss QuitBtn (QtWidgets.QPushButton) :
de init (self,parent):
QtWidgets.QPushButton. init (self,parent)
self.setText ("EXIT")
self.move (150,160)
self.clicked.connect (parent.close)

Maka ketika button Exit di klik, window akan tertutup.

Kita bebas mendefinisikan perilaku dari aplikasi yang kita buat
dengan melakukan overriding method yang sudah ada. Misalnya
QtWidgets.QWidget memiliki method closeEvent bawan, di mana
akan dipanggil ketika ada request untuk menutup aplikasi. Secara
default, aplikasi akan selalu menerima request dan menutup window.
Kita akan mencoba memberikan pop-up window (message box) untuk

memberikan klarifikasi untuk menutup window.
ss NewWindow (QtWidgets.QWidget) :
ef init (self):

def setup(self):

override method closeEvent seperti berikut
def closeEvent (self, event):
reply = QuitMessage () .exec ()
if reply == QtWidgets.QMessageBox.Yes:
event.accept ()
else:
event.ignore ()

Tambahkan kelas QuitMessage berikut

>lass QuitMessage (QtWidgets.QMessageBox) :

def init (self):
QtWidgets.QMessageBox. init (self)
self.setText ("Apakah yakin akan keluar?")
self.addButton (self.No)
self.addButton (self.Yes)

82

83

Aplikasi GUI Sederhana

eCe
Apakah yakin akan keluar?

Gambar 10.3. Contoh signal-slots saat keluar window

10.4 Layouting

PyQt APl menyediakan kelas untuk mengatur tata letak untuk
pengaturan posisi widget yang lebih elegan. Keuntungan dari layout
manager ini dibandingkan menggunakan posisi absolut biasa adalah:

e Widget di dalam window secara otomatis diresize

¢ Memastikan tampilan yang seragam pada perangkat dengan
resolusi layar yang berbeda

¢ Menambah atau menghapus widget secara dinamis tanpa harus
mendesain ulang

QLayout adalah superclass dari kelas turunan QBoxLayout,
QGridLayout, dan QFormLayout.

10.4.1 Kelas QBoxLayout

Kelas QBoxLayout dapat menata widget secara vertikal atau
horizontal. Kelas turunannya adalah QVBoxLayout (untuk mengatur
widget secara vertikal) dan QHBoxLayout (untuk mengatur widget
secara horizontal).

Contoh 1: Vertikal Layout

Di contoh ini dua tombol ditambahkan dalam layout vertikal box.
Ruang kosong yang dapat direntangkan ditambahkan di antara tombol
tersebut dengan metode addStretch(). Oleh karena itu, jika window
diubah ukurannya, posisi tombol secara otomatis disesuaikan.

import sys
from PyQt5.QtWidgets import *

ss MyApp (QWidget) :

def _ init (self):
super (). 1init ()
self.title = "PyQt Vertical Box Layout"

self.initUI ()

def initUI (self):
bl=QPushButton ("Buttonl")
b2=QPushButton ("Button2")
vbox=QVBoxLayout ()
vbox.addWidget (bl)

84

vbox.addStretch ()
vbox.addWidget (b2)
self.setLayout (vbox)
self.setWindowTitle (self.title)
self.show ()

if name == ' main_':
app = QApplication (sys.argv)
win = MyApp ()
app.exec_ ()
1 O e 8" Py(Vertical Box Layout — O X
Button1
Button1
Button2 E—
Tampilan awal program Setelah diresize, posisi dan ukuran tombol

berubah seraca dinamis

Gambar 10.4. Contoh vertikal box layout

Contoh 2: Nested Box Layout

Contoh berikut menunjukkan bagaimana layout dapat dibuat secara
bersarang. Di sini 2 tombol ditmbahkan ke layout vertikal. Kemudian,
objek layout horizontal dengan 2 tombol di dalamnya, ditambahkan
ke dalam layout vertikal. Akhirnya, objek layout vertikal diterapkan
ke window dengan method setLayout().

rt sys

PyQt5.Q0tWidgets import *

MyApp (QWidget) :

def init (self):
super (). init ()

self.title = "PyQt Box Layout"
self.initUI ()

85

def initUI (self):

bl = QPushButton ("Buttonl")
b2 = QPushButton ("Button2")
vbox = QVBoxLayout ()
vbox.addWidget (bl)
vbox.addStretch ()
vbox.addWidget (b2)
b3 = QPushButton ("Button3")
b4 = QPushButton ("Buttond")
hbox = QHBoxLayout ()
hbox.addWidget (b3)
hbox.addwWidget (b4)
vbox.addLayout (hbox)
self.setLayout (vbox)
self.setWindowTitle (self.title)
self.show ()

if name == ' main ':

app = QOApplication(sys.argv)
win = MyApp ()

app.exec_ ()
P — O b4 8" Pyt Box Layout — | X
Button1
Button1
Button2
Button2
Button3 Button Button3 Button4
Tampilan awal program Setelah diresize, posisi dan ukuran tombol

berubah seraca dinamis

Gambar 10.5. Contoh nested box layout

10.4.2 Kelas QGridLayout

Objek kelas QGridLayout menampilkan grid sel yang disusun dalam
baris dan kolom. Kelas berisi metode addWidget(). Widget apa pun
dapat ditambahkan dengan menentukan jumlah baris dan kolom sel.
Kita dapat menambahkan parameter faktor rentang untuk baris serta
kolom, jika diberikan parameter ini membuat widget lebih lebar atau

86

lebih tinggi dari sel lainnya. Dua penerapan metode addWidget()
adalah sebagai berikut:

Tabel 10.1. Penerapan Metode addWidget()

addWidget (QWidget, int r, int c) i .
Menambahkan widget pada baris dar
ditentukan

addWidget (QWidget, int r, int ¢, int i i

rowspan, int columnspan) Menambahkan widget pada baris dar
ditentukan dan memiliki lebar dan / at
ditentukan

Objek Layout lain juga dapat ditambahkan di sel mana pun di grid
untuk membuatnya bersarang.

Tabel 10.2. Penerapan Metode addLayout()

addLayout (QLayout, int r, int c) A A
Menambahkan objek layout pada baris d

ditentukan

Contoh

Kode berikut membuat grid layout dari 16 tombol diatur dalam grid
dengan 4 baris dan 4 kolom.

import sys
from PyQt5.QtWidgets import *

class MyApp (QWidget) :

def init (self):
super (). init ()
self.title = "PyQt Grid Layout"
self.initUI ()

def initUI (self):
grid = QGridLayout ()
for i in range(l,5):

for j in range(l,5):

grid.addWidget (QPushButton ("Btn"+str (i) +str(j)),1i,73)
self.setlLayout (grid)

87

self.setWindowTitle (self.title)

self.show ()

1

if name == ' main_':

app = QApplication(sys.argv)

win = MyApp ()
app.exec ()

B PyOt Grid Layout

Btn1l Btn12
Btn21 Btn22
Btn31 Btn32
Btn41l Btn42

Gambar 10.

— | .
Btn13 Btn14
Btn23 Btn24
Btn33 Btn34
Btn43 Btn44

6. Contoh grid layout

10.4.3 Kelas QFormLayout

QFormLayout adalah cara mudah untuk membuat dua bentuk kolom,
di mana setiap baris terdiri dari input yang terkait dengan label. Kolom
kiri berisi label dan kolom kanan berisi kolom input. Tiga overload
method addRow() adalah sebagai berikut:

Tabel 10.3. Tiga Penerapan Metode addRow()

addRow (QLabel,
QWidget)

Menambahkan baris yang berisi label
dan bidang masukan

addRow (QLabel,
QLayout)

Menambahkan tata letak anak di
kolom kedua

addRow (QWidget)

Menambahkan widget yang
mencakup kedua kolom

88

Contoh

Kode ini menambahkan objek QLineEdit untuk memasukkan nama di
baris pertama. Kemudian ditambahkan layout vertikal untuk dua input
alamat di kolom kedua pada baris berikutnya. Selanjutnya, objek
layout horizontal yang berisi dua kolom Radio button ditambahkan di
kolom kedua pada baris ketiga. Baris keempat diberikan dua tombol
‘Submit’ dan ‘Cancel’.

import sys
PyQt5.0tWidgets import *

MyApp (QWidget) :
def init (self):
super (). init ()
self.title = "PyQt Grid Layout"
self.initUI ()
def initUI (self):
fbox = QFormLayout ()
11 = QLabel ("Nama™)
nm = QLineEdit ()
12 = QLabel ("Alamat")
addl = QLineEdit ()
add2 = QLineEdit ()
fbox.addRow (11, nm)
vbox = QVBoxLayout ()
vbox.addWidget (addl)
vbox.addWidget (add2)
fbox.addRow (12, vbox)
hbox = QHBoxLayout ()
rl = QRadioButton("L")
r2 = QRadioButton ("P")
hbox.addWidget (rl)
hbox.addWidget (r2)
fbox.addRow (QLabel ("Gender") , hbox)

fbox.addRow (QPushButton ("Submit") ,QPushButton ("Cancel"))
self.setLayout (fbox)
self.setWindowTitle (self.title)
self.show ()
if name == ' main_':
app = QApplication (sys.argv)
win = MyApp ()
app.exec_ ()

89

i PyQtGrd.. — O X

MNama

Alamat

|
|
|
Gender oL Qr

Submit Cancel

Gambar 10.7. Contoh tampilan form layout

10.5 Menggunakan GtDesigner untuk Merancang GUI

Instalasi PyQt dilengkapi dengan tools untuk merancang GUI dengan
mudah yang disebut QtDesigner. Tools ini menggunakan antarmuka
drag and drop sederhana, sehingga GUI dapat dengan cepat dibuat
tanpa harus menulis kode. Namun, QtDesigner tidak memiliki
fasilitas untuk menulis kode program sehingga sedikit susah untuk
melakukan debug dan membangun aplikasi.

Pembuatan antarmuka GUI menggunakan QtDesigner dimulai
dengan memilih top level window untuk aplikasi.

Kemudian Anda dapat drag and drop widget yang diperlukan dari
kotak widget di sebelah kiri. Anda juga dapat menetapkan nilai ke
properti widget yang diletakkan pada form.

Desain GUI yang dirancang dengan QtDesigner disimpan sebagai file
dengan ekstensi *.ui. File ui ini berisi representasi XML widget dan
propertinya. File desain ini perlu diterjemahkan ke dalam kode setara
Python dengan menggunakan perintah pyuic5 dari command prompt
(windows) atau terminal (linux/mac). Penggunaan pyuic5 adalah
sebagai berikut:

pyuicb -x namafile.ui -o namafile.py

90

[Tl Mew Form - Ot Designer

hd templates\forms
Dialeg with Buttons Bottom
Dialog with Buttons Right
Dialog without Buttons
Main Window

> Widgets

Embedded Design
Device: Naone N

Screen Size: | VGA landscape (640x480) ™

Show this Dialog on Startup

Open... Recent - Close

Gambar 10.8. Window awal QtDesigner untuk membuat desain

91

baru

Widget Box 8 X
|F\Her
hd Layouts A

E Vertical Layout
ﬂ["] Horizontal Layout
233 Grid Layout

42 Form Layout

hd Spacers

[Bd] Horizontal Spacer
g Vertical Spacer

v Buttons

Push Button

E): Toel Button

@ Radio Button

. Check Box

e Command Link Button

Dialog Button Box

Item Views (Model-Bazed)

v
List View

Tree View
[2.=:

1 Form - untitled”

B I
-m oK
S L]
Property Editor 8 x
[Filter g = /#
pushButton : QPushButton
Property Value ()
> accessibleMame
> accessibleDescription
layoutDirection LeftToRight
autoFillBackground (|
styleSheet
> locale English, UnitedStates
> inputMethodHints ImhMone
QAbstractButton
> text oK
> icon
> iconSize 16x 16
> shortcut
checkable O
checked (|
autoRepeat O
autoExclusive N
autoRepeatDelay 300
autoRepeatinterval 100

Gambar 10.9. Tampilan beberapa toolbox pada lembar kerja

QtDesigner

92

