
PEMROGRAMAN KOMPUTER
DENGAN PYTHON

Program Studi Matematika
Fakultas Sains dan Teknologi
UIN Maulana Malik Ibrahim Malang

2021

MODUL PRAKTIKUM

i

ii

KATA PENGANTAR

Puji syukur ke hadirat Allah جل جلاله, yang telah memberikan ramat-Nya

sehingga Modul Ajar Pemrograman Komputer dengan Python ini

dapat diselesaikan dengan sebaik-baiknya. Sholawat serta salam kita

haturkan kepada junjungan kita Baginda Nabi Muhammad صلى الله عليه وسلم, semoga

kelak di hari akhir kita mendapatkan syafa’at beliau.

Modul ajar ini dibuat sebagai pedoman dalam melakukan kegiatan

pembelajaran Pemrograman Komputer yang merupakan kegiatan

penunjang mata kuliah pada Jurusan Matematika Fakultas Sains dan

Teknologi UIN Maulana Malik Ibrahim Malang.

Modul ajar ini diharapkan dapat membantu mahasiswa/i dalam

mempersiapkan dan melaksanakan perkuliahan dengan lebih baik,

terarah, dan terencana. Pada setiap topik telah dijelaskan teori singkat

untuk memperdalam pemahaman mahasiswa/i mengenai materi yang

dibahas.

Penyusun menyakini bahwa dalam pembuatan Modul Ajar

Pemrograman Komputer dengan Python ini masih jauh dari

sempurna. Oleh karena itu, penyusun mengharapkan kritik dan saran

yang membangun guna penyempurnaan buku ajar ini di masa yang

akan datang. Akhir kata penyusun mengucapkan banyak terima kasih

kepada semua pihak yang telah membantu baik secara langsung

maupun tidak langsung.

Malang, 13 November 2019

Penyusun

iii

iv

DAFTAR ISI

KATA PENGANTAR ...

DAFTAR ISI .. iv

BAB 1 PENDAHULUAN ... 2

1.1 Instalasi ... 2

1.2 Memulai .. 2

1.3 Bahasa Python ... 3

BAB 2 VARIABEL ... 4

2.1 Tipe Numerik .. 4

2.2 Tipe String... 6

BAB 3 TIPE DATA KOLEKSI .. 8

3.1 Tipe List .. 8

3.2 Tipe Dictionary ... 9

3.3 Tipe Tuple ... 9

3.4 Tipe Set ... 10

BAB 4 FUNGSI .. 12

4.1 Fungsi Global .. 12

4.2 Fungsi Lokal ... 13

4.3 Fungsi Lambda .. 13

4.4 Parameter Default ... 14

BAB 5 CONTROL FLOW .. 16

5.1 Ekspresi Boolean ... 16

v

5.2 Operators .. 17

5.3 Conditional execution .. 17

5.4 Perulangan (Looping) ... 22

BAB 6 DATA VISUALIZATION 28

6.1 Visualisasi Data .. 28

6.2 Matplotlib ... 28

6.3 Persiapan Data .. 29

BAB 7 LIBRARY NUMPY ... 32

7.1 Pengantar NumPy ... 32

7.2 Operasi-operasi Dasar pada NumPy 37

7.3 Fungsi Universal .. 39

7.4 Indexing, Slicing and Iterating 40

7.5 Mengubah bentuk sebuah array 43

7.6 Menumpuk bersama array yang berbeda 44

7.7 Memecah Array Menjadi Beberapa Bagian yang Lebih

Kecil ... 46

7.8 Menyalin dan menampilkan ... 47

7.9 Aljabar Linier ... 48

7.10 Automatic Reshaping ... 49

7.11 Penumpukan Vektor ... 49

BAB 8 LIBRARY SYMPY ... 52

8.1 Pengantar SymPy ... 52

vi

BAB 9 PEMROGRAMAN BERBASIS OBJEK DENGAN

PYTHON .. 56

9.1 Konsep Class dan Objek ... 56

9.2 Encapsulation .. 62

9.3 Inheritance .. 67

9.4 Polymorphism ... 73

BAB 10 PEMROGRAMAN GUI DENGAN PYTHON DAN

PYQT5 76

10.1 Pengenalan GUI dengan PyQt5....................................... 76

10.2 Membuat Window Awal ... 77

10.3 Signal dan Slots ... 81

10.4 Layouting .. 84

10.5 Menggunakan GtDesigner untuk Merancang GUI 90

1

2

BAB 1

PENDAHULUAN

Bahasa pemrograman Python mulai populer saat dikarenakan

berbagai hal; mudah dipelajari, tersedia dan bayak library-nya. Nanti

akan kita bahas beberapa library Python ini. Lengkapnya library ini

juga yang menyebabkan Python dipergunakan di berbagai aplikasi.

Berbagai sekolah (dan perguruan tinggi) ba-hkan mengajarkan Python

sebagai pengantar pemrograman.

Bahasa Python tersedia untuk berbagai sistem operasi; Windows, Mac

OS, dan berbagai variasi dari UNIX (Linux, *BSD, dan seterusnya).

Di dalam buku ini saya akan menggunakan contoh-contoh yang saya

gunakan di komputer saya yang berbasis Windows. Meskipun

seharusnya semuanya kompatibel dengan berbagai sistem operasi,

kemungkinan ada hal-hal yang agak berbeda. Jika hal itu terjadi,

gunakan internet untuk mencari jawabannya.

1.1 Instalasi

Python dapat diperoleh secara gratis dari berbagai sumber. Sumber

utamanya adalah di situs python.org. Untuk sementara ini bagian ini

saya serahkan kepada Anda. Ada terlalu banyak perubahan sehingga

bagian ini akan cepat kadaluwarsa.

Untuk sistem operasi berbasis Linux dan Mac OS, Python sudah

terpasang sebagai bawaan dari sistem operasinya. Jika Anda ingin

menggunakan versi terbaru maka Anda harus memasangnya sendiri

dengan mengunduh instalasinya di python.org.

1.2 Memulai

Sekarang kita dapat memulai pemrograman Python dengan

menuliskan program “hello world” (yang merupakan standar bagi

belajar pemrograman). Ketikkan “print ...” (dan seterusnya seperti di

bawah ini).

3

 print("Hello, world!")

 Hello, world!

Python akan menampilkan apapun yang ada di antara tanda petik

tersebut. Hore! Anda berhasil membuat program Python yang

pertama.

Mari kita lanjutkan dengan membuat program yang lebih panjang.

Program Python dapat disimpan di dalam sebuah berkas untuk

kemudian dieksekusi belakangan. Buka editor kesukaan Anda dan

ketikkan program hello world di atas di dalam editor Anda tersebut.

Setelah itu simpan berkas tersebut dengan nama “hello.py”. Biasanya

berkas program Python ditandai dengan akhiran (extension) “.py”.

Setelah berkas tersebut tersedia, maka kita dapat menjalankan Python

dengan memberikan perintah Run Module (F5).

 Hello, world!

1.3 Bahasa Python

Tentang bahasa Python itu sendiri akan diperdalam pada versi

berikutnya. Sementara itu fitur tentang bahasa Python akan dibahas

sambil berjalan. Pendekatan ini saya ambil untuk membuat buku

menjadi lebih menarik dan lebih singkat. Belajar seperlunya.

Hal yang sangat berbeda dari bahasa Python dengan bahasa

pemrograman lainnya adalah masalah block dari kode. Bahasa

pemrograman C misalnya menggunakan tanda kurung kurawal “{”

untuk menyatakan blok. Sementara itu Python menggunakan

indentation untuk menyatakan satu blok. Lihat contoh di bawah ini.

 for i in range(10):

 print(i)

Disarankan untuk menggunakan spasi sebanyak empat (4) buah untuk

indentation tersebut. (Ini membuat banyak perdebatan karena ada

banyak orang yang menggunakan tab bukan spasi.)

4

BAB 2

VARIABEL

2.1 Tipe Numerik

Python mendukung beberapa tipe data untuk keperluan penyimpanan

data numerik. Data numerik yang dapat digunakan meliputi bilangan

bulat, bilangan riil, dan bilangan kompleks. Semua objek dari tipe

numerik tidak dapat diubah nilainya atau bersifat immutable. Bagian

ini menjelaskan tentang masing-masing tipe data tersebut.

2.1.1 Bilangan Bulat

Terdapat dua tipe data bilangan bulat yang didukung oleh python 3,

yaitu integer (int) dan boolean (bool). Python 3 tidak memiliki nilai

maksimum untuk tipe int. untuk mengonversi bilangan bulat ke string,

gunakan fungsi str(), seperti berikut:

>>> a = 12345

>>> type(a)

<class 'int'>

>>> b = str(a)

>>> b '12345'

>>> type(b)

<class 'str'>

Sebaliknya jika anda ingin mengonversi nilai dari tipe string ke int,

gunakan fungsi int().

>>> a = '12345'

>>> type(a)

<class 'str'>

>>> b = int(a)

>>> b 12345

>>> type(b)

<class 'int'>

Tipe bool digunakan untuk menyatakan tipe logika (boolean). objek

dari tipe bool hanya dapat diisi dengan nilai True atau False (huruf T

dan F harus di tulis dalam huruf besar). jika di konversikan ke tipe int,

nilai true akan menghasilkan nilai 1 dan False menghasilkan nilai 1.

5

>>> int(True)

1

>>> int(False)

0

>>> a=True

>>> type(a)

<class 'bool'>

>>> int(a)

1

2.1.2 Bilangan Riil

Untuk merepresentasikan data bertipe bilangan riil (mengandung

angka di belakang koma), Python menyediakan tipe float. Bilangan

dengan tipe float ditulis menggunakan tanda titik (.), seperti berikut:

>>> a=123.456

>>> a

123.456

>>> type(a)

<class 'float'>

>>> a*2

246.912

Anda juga dapat menulis bilangan riil dalam bentuk eksponen, seperti

berikut:

>>> a=8.9e-4

>>> a

0.00089

Notasi diatas menunjukkan nilai 8.9 x 1 0 -4

untuk mengonversi bilangan dengan tipe float ke string, gunakan

fungsi str(). Sebaliknya, untuk mengonversi string ke tipe float,

gunakan fungsi float().

>>> a=123.456

>>> type(a)

<class 'float'>

>>> b=str(a)

>>> b

'123.456'

>>> type(b)

<class 'str'>

>>> c=float(b)

>>> c

6

123.456

>>> type(c)

<class 'float'>

2.1.3 Bilangan Kompleks

Bilangan kompleks adalah bilangan yang mengandung pasangan

bilangan dari tipe float. Bagian pertama merupakan bagian riil dan

bagian kedua merupakan bagian imajiner, kedua bagian tersebut

digabung menggunakan tanda + atau - dan diakhiri dengan huruf j.

>>> a=-9+17j

>>> a

(-9+17j)

>>> type(a)

<class 'complex'>

>>> a.real

-9.0

>>> a.imag

17.0

2.2 Tipe String

Dalam Python, teks (string) merupakan kumpulan karakter Unicode

yang direpresentasikan dengan tipe str. Objek string dapat dibuat

melalui tiga cara, yaitu:

 Menggunakan tanda petik tunggal

 Menggunakan tanda petik ganda

 Menggunakan tanda petik tunggal atau petik ganda yang

ditulis tiga kali

Cara Terakhir biasanya hanya digunakan untuk membuat string

panjang yang jumlahnya lebih dari satu baris

>>> s1='PyQt'

>>> s1

'PyQt'

>>> s2="Python"

>>> s2

'Python'

>>> s3=''' Pemrograman GUI dengan Python dan PyQt '''

>>> s3 '\nPemrograman GUI\ndengan Python dan PyQt\n'

>>> s4=""" Pemrograman GUI dengan Python dan PyQt """

7

>>> s4

'\nPemrograman GUI\ndengan Python dan PyQt\n'

>>> b='python'

>>> b

'python'

>>> b=b.capitalize()

>>> b

'Python'

>>> b=b.upper()

>>> b

'PYTHON'

>>> b=b.lower()

>>> b

'python'

>>> b.isupper()

False

>>> b.islower()

True

>>> s=' '.join(['saya','makan','ayam'])

>>> s

'saya makan ayam'

>>> nim='16610021'

>>> nim.isnumeric()

True >>>

nim='16610o21'

>>> nim.isnumeric()

False

8

BAB 3

TIPE DATA KOLEKSI

3.1 Tipe List

List merupakan objek yang bersifat mutable atau nilainya dapat

diubah. Kita dapat menambah, mengubah, maupun menghapus

elemen-elemen yang terdapat di dalam list. Objek list dibuat

menggunakan tanda []. Setiap objek atau elemen yang terdapat di

dalam list harus dibatasi menggunakan tanda koma, tapi tidak harus

sejenis. Artinya, bisa saja list berisi beberapa objek yang berasal dari

tipe berlainan, misalnya str, int, dan sebagainya.

>>> list1=[100,200,300,400]

>>> list2=[1,'Pemrograman Komputer',12000.00]

>>> list=[10,8,12,6,15]

>>> list

[10, 8, 12, 6, 15]

>>> len(list)#Menghitung banyaknya elemen didalam list

5

>>> li=[10,8,12,6,15]

>>> li

[10, 8, 12, 6, 15]

>>> li[0],li[1],li[2],li[3],li[4]

(10, 8, 12, 6, 15)

>>> li[-5],li[-4],li[-3],li[-2],li[-1]

(10, 8, 12, 6, 15)

>>> li.append(20)#menambahkan elemen dalam list

>>> li.append(25)

>>> li [10, 8, 12, 6, 15, 20, 25]

>>> li.extend([100,200,300])#menambahkan list dalam sebuah

list

>>> li

[10, 8, 12, 6, 15, 20, 25, 100, 200, 300]

>>> li[0]=99

>>> li[1]=77

>>> li

[99, 77, 12, 6, 15, 20, 25, 100, 200, 300]

>>> li.remove(99) #menghapus elemen di dalam list

>>> li.remove(300)

>>> li.remove(15)

>>> li

[77, 12, 6, 20, 25, 100, 200]

>>> li.clear() #Menghapus Semua elemen didalam list

9

>>> li

[]

3.2 Tipe Dictionary

Dictionary (kamus) atau sering juga disebut tipe mapping merupakan

objek yang berisi daftar pasangan kunci dan nilai (key-value pair).

Pada struktur data list, elemen-elemen diindeks berdasarkan bilangan

positif maupun negatif tergantung dari arah mana elemen-elemen

tersebut akan diakses. Pada struktur dat dictionary, elemen-elemen

akan diindeks berdasarkan kuncinya. Objek yang dijadikan sebagai

kunci dapat berasal dari tipe apa saja, tapi pada umumnya berupa

string, atau paling tidak berupa bilangan. Berbeda dengan list,

dictionary dibuat menggunakan { }. Setiap pasangan kunci dan nilai

harus dipisahkan menggunakan tanda (:).

>>> na={'A':4,'B':3,'C':2,'D':1,'E':0}

>>> na

{'A': 4, 'B': 3, 'C': 2, 'D': 1, 'E': 0}

>>> na.keys() #Menampilkan Kata Kunci(key) dalam Dictionary

dict_keys(['A', 'B', 'C', 'D', 'E'])

>>> na.values() #Menampilkan Kata Value dalam Dictionary

dict_values([4, 3, 2, 1, 0])

>>> na['A']

4

>>> na['B']

3

>>> na['C']

2

>>>

>>> kamus={'mouse':'tikus','cat':'kucing'}

>>> kamus['cat']

'kucing'

>>> kamus.keys()

dict_keys(['mouse', 'cat'])

>>> kamus.values()

dict_values(['tikus', 'kucing'])

3.3 Tipe Tuple

Tuple adalah tipe koleksi yang mirip dengan list. Pebedaannya, tuple

bersifat immutable atau elemen-elemennya tidak dapat diubah, baik

nilainya maupun jumlah elemennya. Ini berarti bahwa kita tidak dapat

10

menambah, mengubah, atau menghapus elemen di dalam tuple.

Dengan kata lain, tuple merupakan koleksi yang bersifat konstan.

Tuple dibuat menggunakan tanda ().

>>> t=(10,20,30)

>>> t[0]

10

>>> t[1]

20

>>> t[2]

30

>>> t[-3],t[-2],t[-1]

(10, 20, 30)

>>> len(t) #Menghitung banyaknya elemen didalam Tuple

3

3.4 Tipe Set

Set (himpunan) adalah tipe koleksi yang setiap elemennya bersifat

unik. Dengan demikian, di dalam set tidak akan pernah ada duplikasi

nilai elemen. Jika pada saat pembuatan set terdapat beberapa elemen

yang nilainya sama, maka elemen-elemen tersebut hanya akan

diambil satu, sisanya secara otomatis akan dibuang. Set dibuat

menggunakan fungsi set() dengan parameter bisa berupa list,

dictionary, tuple, maupun string.

>>> s=set([10,10,20,30,30,30])

>>> s

{10, 20, 30}

>>> len(s)

3

>>> s.add(60) #Menambahkan anggota himpunan(set)

>>> s

{10, 20, 30,60}

>>> len(s)

4

11

12

BAB 4

FUNGSI

Fungsi adalah bagian atau blok program yang berisi satu tugas

spesifik. Ketika dipanggil, fungsi ada yang menghasilkan atau

mengembalikan nilai dan ada juga yang tidak. Nilai yang dihasilkan

oleh fungsi disebut dengan istilah nilai balik (return value). Dalam

beberapa bahasa pemrograman lain, fungsi dengan nilai balik disebut

fungsi dan fungsi tanpa nilai balik disebut prosedur. fungsi hanya

perlu didefinisikan satu kali, tapi dapat digunakan atau dipanggil

berkali-kali. Dalam Phyton, fungsi didefinisikan menggunakan

perintah def melalui bentuk umum berikut :

def NamaFungsi(parameter1,parameter2,...):

 #badan fungsi

Daftar parameter dari suatu fungsi bersifat opsional, tapi sebagian

besar fungsi pada umumnya memiliki satu parameter atau lebih.

Terdapat empat jenis fungsi yang dapat dibuat di dalam Phyton, yaitu

: fungsi global, fungsi lokal, dan fungsi lambda.

4.1 Fungsi Global

Fungsi global adalah fungsi yang didefinisikan di dalam suatu modul

dan dapat dipanggil oleh fungsi lain, baik yang berada di dalam modul

yang sama maupun modul lain.

>>> def kali(a,b):

 c=a*b

 return c # mengembalikan nilai ke baris pemanggil

>>> def tulis(s):

 print(s)

>>> z=kali(10,5)

>>> z

50

>>> tulis('Pemrograman Komputer I dengan Python')

Pemrograman Komputer I dengan Python

>>> tulis(z)

50

13

4.2 Fungsi Lokal

Fungsi lokal adalah fungsi yang didefinisikan di dalam fungsi lain.

fungsi lokal sering disebut fungsi bersarang (nested function). berbeda

dengan fungsi global, fungsi lokal hanya akan dikenal oleh fungsi luar

tempat fungsi lokal tersebut didefinisikan.

>>> def persentase(a,b,c):

 def hitungPersen(x):

 total=a+b+c

 return(x*100.0)/total

 print("Persentase: %f\t%f\t%f" %

(hitungPersen(a),hitungPersen(b),hitungPersen(c)))

>>> persentase(50,50,50)

Persentase: 33.333333 33.333333 33.333333

>>> persentase(30,90,30)

Persentase: 20.000000 60.000000 20.000000

4.3 Fungsi Lambda

Fungsi lambda adalah suatu ekspresi untuk menangani tugas-tugas

pemrograman yang sederhana. Fungsi jenis ini sering dikenal dengan

fungsi tanpa nama (anonymous function) dan dibuat menggunakan

kata kunci lambda. Bentuk umum penggunaan kata kunci lambda

adalah sebagai berikut :

lambda DaftarParameter: ekspresi

Berikut ini contoh kode yang menunjukkan penggunaan kata kunci

lamda.

>>> maks = lambda a,b: a if a>b else b

>>> maks(20,10)

20

>>> maks(100,200)

200

>>>

Jika ditulis dalam bentuk fungsi normal, kode di atas dapat diubah

menjadi seperti berikut:

>>> def maks(a,b):

 if a>b:

 return a

14

 else:

 return b

>>> maks(20,10)

20

>>> maks(100,200)

200

Terdapat beberapa hal yang tidak dapat dilakukan pada fungsi

lambda, sehingga kita perlu menggunakan fungsi normal. jika anda

ingin menyertakan struktur pengulangan for maupun while, perintah-

perintah non-ekspresi, dan perintah yang berjumlah lebih dari satu,

maka anda tidak dapat menggunakan fungsi lambda. Fungsi lambda

biasanya diperankan sebagai parameter dari suatu fungsi lain. Fungsi

yang berperan sebagai parameter sering disebut dengan fungsi

callback.

4.4 Parameter Default

Suatu parameter fungsi dapat memiliki nilai default pada saat fungsi

tersebut didefinisikan. Proses pengisisan nilai ke dalam parameter

dilakukan menggunakan operator penugasan (=). Melalui cara ini, kita

dapat memanggil fungsi tanpa menyertakan nilai untuk parameter

bersangkutan. Parameter seperti ini sering disebut parameter default

atau parameter opsional. Parameter default harus ditempatkan pada

urutan paling akhir dari daftar parameter lain.

>>> def tulis(s, gantibaris=True):

if not gantibaris:

print(s,end='')

else:

print(s)

>>> tulis('Python')

Python

>>> tulis('Python',False);tulis(' dan Ruby')

Python dan Ruby

>>> tulis('Python');tulis('Ruby')

Python

Ruby

>>>

15

Parameter gantibaris pada contoh kode di atas merupakan parameter

default. Nilai default untuk parameter tersebut adalah True. Ini berarti

bahwa jika fungsi tulis() dipanggil tanpa menyertakan parameter

kedua, maka parameter ganti baris akan diisi dengan nilai True.

16

BAB 5

CONTROL FLOW

5.1 Ekspresi Boolean

Sebuah ekspresi Boolean adalah ekspresi yang bernilai true atau false.

Ekspresi ini digunakan untuk membandingkan dua nilai atau variabel

(operand). Contoh berikut merupakan ekspresi boolean menggunakan

operator ‘==’ (sama dengan / equality) untuk membandingkan 2 buah

nilai:

>>> 5 == 5

True

>>> 5 == 6

False

True dan False merupakan tipe data khusus, yaitu boolean, bukan tipe

data string. Selain operator ‘==’, ada beberapa operator lain yang bisa

digunakan untuk membuat ekspresi boolean, operator-operator ini

disebut operator relasi. Operator relasi ditunjukkan pada Tabel 5.1.

Operator Relasi.

Tabel 5.1. Operator Relasi

Ekspresi Deskripsi

x == y bernilai True jika x sama dengan y

x != y bernilai True jika x tidak sama dengan y

x > y bernilai True jika x lebih dari y

x < y bernilai True jika x kurang dari y

x >= y bernilai True jika x lebih dari atau sama dengan y

17

x <= y bernilai True jika x kurang dari atau sama dengan y

5.2 Operators

Operator logika merupakan jenis operator yang akan membandingkan

logika hasil dari operator relasi. Terdapat macam operator yang

termasuk dalam operator logika yaitu: and, or, dan not. Deskripsi dari

masing-masing operator tersebut dijelaskan pada Tabel 5.2. Operator

Logika.

Contoh operator and adalah x > 0 and x < 10 akan bernilai True jika

dan hanya jika x lebih besar dari 0 dan kurang dari 10. Ekspresi n%2

== 0 or n%3 == 0 akan bernilai True jika bilangan n habis dibagi 2

atau 3. Ekspresi not (x > y) bernilai True jika x > y bernilai False,

yaitu jika x kurang dari atau sama dengan y.

Tabel 5.2. Operator Logika

Operator Deskripsi

and Melakukan pengecekan kondisi yang harus bernilai True untuk kedua operand kanan dan kiri

secara bersamaan

or Melakukan pengecekan kondisi yang dapat bernilai True pada salah satu atau kedua operand

kanan dan kiri

not Melakukan pengecekan kondisi NOT, atau membalikkan kondisi. Contoh NOT(A AND B)

5.3 Conditional execution

Pada saat membuat sebuah program, kadangkala kita membutuhkan

pemilihan pernyataan mana yang akan dijalankan oleh komputer.

Kemampuan pemilihan perintah inilah yang disebut conditional

statement. Contoh sederhana dari pernyataan conditional ini adalah

sebagai berikut:

18

if x > 0:

 print(‘x is positive’)

Pada contoh di atas, pernyataan print ’x is positive’ akan dijalankan

jika x > 0, sedangkan jika sebaliknya maka pernyataan tersebut tidak

dijalankan. Ada beberapa conditional statement yang akan dibahan

pada bab ini.

5.3.1 5.3.1 Conditional if

Conditional if digunakan untuk memilih apakah sebuah pernyataan

akan dijalankan atau tidak sesuai kondisi yang diberikan. Alur

pemilihan if ditunjukkan pada Gambar 5.1.

Gambar 5.1. Alur Pemilihan if

Sintaks pemilihan if adalah sebagai berikut:

if kondisi:

 statement

Kondisi pada sintaks tersebut dapat berisi ekspresi relasi dan atau

ekspresi logika.

Percobaan Conditional if

1. Buka python editor dan buat script baru dengan nama

"Percobaan1.py".

2. Tuliskan kode untuk mengambil masukan dari user.

19

nilai = input("Masukkan nilai Anda: ")

3. Tuliskan kode conditional if untuk melakukan pengecekan nilai.

Jangan lupa konversikan variabel nilai menjadi int.

if int(nilai) >= 70:

 print("Anda lulus ujian! SELAMAT!")

4. Jalankan program tersebut dan perhatikan hasilnya.

5.3.2 Conditional if-else

Conditional if-else digunakan untuk memilih pernyataan mana yang

akan dijalankan dari 2 pernyataan sesuai kondisi yang diberikan. Alur

pemilihan if-else ditunjukkan pada Gambar 5.2.

Gambar 5.2. Alur Pemilihan if-else

Sintaks pemilihan if-else adalah sebagai berikut:

if kondisi:

 statement1

else:

 statement2

20

Pernyataan pada blok if akan dijalankan jika kondisi bernilai True,

tapi jika bernilai False maka pernyataan pada blok else akan

dijalankan.

Percobaan Conditional if-else

1. Buka script Percobaan1.py yang sudah Anda buat.

2. Tambahkan kode conditional if-else untuk melakukan pengecekan

nilai apakah lulus atau tidak.

if int(nilai) >= 70:

 print("Anda lulus ujian! SELAMAT!")

else:

 print("Anda belum lulus ujian!")

3. Jalankan program tersebut dan perhatikan hasilnya.

5.3.3 Conditional if-elif-else

Conditional if-elif-else digunakan untuk memilih pernyataan mana

yang akan dijalankan dengan beberapa kondisi pengecekan. Alur

pemilihan if-elif-else ditunjukkan pada Gambar 5.3.

Sintaks pemilihan if-elif-else adalah sebagai berikut:

if kondisi1:

 statement1

elif kondisi2:

 statement2

.

.

.

else:

 statementX

Pernyataan pada blok if akan dijalankan jika kondisi1 bernilai True,

tapi jika bernilai False maka akan dicek kondisi2 pada elif dan

seterusnya sampai dengan else.

21

Gambar 5.3. Alur Pemilihan if-elif-else

Percobaan Conditional if-elif-else

1. Buka script Percobaan1.py yang sudah Anda buat pada Percobaan

1 dan 2.

2. Tambahkan kode conditional if-elif-else untuk melakukan

pengecekan nilai apakah valid dan lulus atau tidak.

if int(nilai) < 0 or int(nilai) > 100:

 print("Nilai Anda TIDAK valid")

elif int(nilai) >= 70:

 print("Anda lulus ujian! SELAMAT!")

else:

 print("Anda belum lulus ujian!")

3. Jalankan program tersebut dan perhatikan hasilnya.

Latihan

1. Buatlah program untuk menginputkan dua buah bilangan bulat,

kemudian mencetak salah satu bilangan yang nilainya terbesar!

2. 2. Pada akhir semester seorang dosen menghitung nilai akhir dari

mahasiswa yang terdiri dari nilai uas, uts, kuis, dan tugas. Nilai

22

akhir didapatkan dari 40% nilai uas, 30% nilai uts, 10% nilai kuis,

dan 20% nilai tugas. Jika nilai akhir dari mahasiswa di bawah 65

maka mahasiswa tersebut akan mendapatkan remidi. Buatlah

program untuk membantu mengetahui mahasiswa yang

mendapatkan remidi berdasarkan nilai akhir yang didapatkannya!

3. Buatlah program kalkulator sederhana menggunakan Python. User

akan memasukkan dua buah bilangan riil dan satu buah operator

aritmatika (+, -, *, atau /), kemudian program akan

mengoperasikan dua bilangan tersebut dengan operator yang

sesuai. Contoh tampilan program:

Gambar 5.4. Contoh output program kalkulator sederhana

5.4 Perulangan (Looping)

Loop adalah suatu blok atau kumpulan instruksi yang dilaksanakan

secara berulang-ulang. Perulangan yang disebut juga repetition akan

membuat efisiensi proses diban-dingkan jika dioperasikan secara

manual. Diagram pada Gambar 5.5 mengilustrasikan sebuah

pernyataan loop.

23

Gambar 5.5. Alur Perulangan

Ada dua jenis perulangan dalam Python, yaitu while loop dan for loop.

5.4.1 While Loop

Perulangan dengan while akan mengulang sebuah pernyataan atau

kumpulan pernyataan jika kondisi yang diberikan bernilai True.

Kondisi akan dicek terlebih dahulu sebelum menjalankan body loop.

Sintaks perulangan while adalah sebagai berikut:

while kondisi:

 statement

Contoh penggunaannya adalah sebagai berikut:

count = 0

while count < 5:

 print(count)

 count += 1 #menampilkan 0 1 2 3 4

Percobaan While Loop

Program untuk menghitung nilai faktorial.

1. Buka python editor dan buat script baru dengan nama

"Faktorial.py".

2. Tuliskan fungsi faktorial yang berisi perulangan dengan while

untuk menghitung nilai faktorial.

24

def faktorial(n):

fac = 1

i = 1

while i <= n:

fac = fac * i

i += 1

return fac

3. Tuliskan kode untuk mengambil masukan dari user. Jangan lupa

konversikan variabel n menjadi int.

angka = int(input("Masukkan nilai yang akan dihitung:

"))

4. Jalankan program tersebut dan perhatikan hasilnya.

faktorial(angka)

Percobaan Looping dengan Break

1. Buka python editor dan buat script baru dengan nama

"LoopBreak.py".

2. Tuliskan kode program berikut:

b = 0

while True:

 angka = int(input("Masukkan Angka: "))

 b += angka

 if b > 50:

 break print("Angka berhenti pada jumlah: " + b)

3. Jalankan program tersebut dan perhatikan hasilnya.

5.4.2 For Loop

Perulangan dengan loop melakukan perulangan setiap elemen pada

sebuah kumpulan data (array, list, dictionary, range). Sintaks

perulangan for adalah sebagai berikut:

for element in sequence:

 statement

Contoh penggunaannya adalah sebagai berikut:

primes = [2,3,5,7]

25

for prime in primes:

 print(prime) #menampilkan 2 3 5 7

Percobaan For Loop

Program perulangan dengan for untuk menghitung jumlah total.

1. Buka python editor dan buat script baru dengan nama

"ForLoop.py".

2. Buat list yang berisi beberapa angka.

numbers = [1,10,20,30,40,50]

3. Tuliskan kode untuk melakukan perhitungan jumlah total angka

yang ada dalam list.

sum = 0

for number in numbers:

 sum += number

4. Jalankan program tersebut dan tampilkan hasilnya.

print(sum)

Latihan

1. Buatlah program yang meminta masukan user sebuah bilangan

bulat N di mana (N > 0). Program kemudian menampilkan

penjumlahan N bilangan genap positif pertama (bilangan genap ≥

0). Contoh:

• Jika user memasukkan N = 3, maka outputnya: 0 + 2 + 4 = 6

• Jika user memasukkan N = 5, maka outputnya: 0 + 2 + 4 + 6

+ 8 = 20

2. Buatlah sebuah program yang meminta masukan user sebuah

bilangan bulat N dimana (N > 0). Kemudian, program

menampilkan penjumlahan N bilangan kuadrat pertama. Bilangan

kuadrat adalah = 1,4,9,16,25,36,...., N 2 . Contoh:

• Jika user memasukkan N = 2, maka outputnya: 1 + 4 = 5

• Jika user memasukkan N = 3, maka outputnya: 1 + 4 + 9 =

14

26

3. Buatlah sebuah program yang meminta masukan user sebuah

bilangan bulat N dimana (N > 0). Program kemudian memeriksa

setiap digit yang ada di angka tersebut, dan menampilkan berapa

jumlah digit yang ganjil dari bilangan N tersebut.

• Jika user memasukkan N = 2345, jumlah digit yang ganjil =

2

• Jika user memasukkan N = 993312, jumlah digit yang ganjil

= 5

27

28

BAB 6

DATA VISUALIZATION

6.1 Visualisasi Data

Python sudah sangat mendukung untuk visualisasi data baik untuk

plot grafik, scatter, bar, maupun yang lain. Ada banyak library yang

bisa dipakai untuk melakukan visualisasi data, seperti matplotlib,

bokeh, seaborn, dan sebagainya. Namun, tidak semua library kita

bahas dalam tutorial ini.

6.2 Matplotlib

Visualisasi data pada python dapat dilakukan menggunakan library

matplotlib. Matplotlib merupakan salah satu library python untuk

plotting grafik 2D dengan environment yang interaktif. Untuk

visualisasi sederhana kita bisa menggunakan modul pyplot pada

library matplotlib. Visualisasi data menggunakan matplotlib langkah-

langkah utamanya adalah:

1. import library matplotlib dan library lain yang dibutuhkan

2. menyiapkan data

3. plot data

4. menampilkan plot grafik

Contoh membuat plot grafik sederhana menggunakan matplotlib

adalah sebagai berikut:

import library

import matplotlib.pyplot as plt

persiapan data

x = [1,2,3,4]

y = [10,20,25,30]

membuat plot grafik

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot(x, y, color=‘lightblue’, linewidth=3)

ax.scatter([2,4,6],[5,15,25],color=‘darkgreen’,

 marker=‘ * ’)

ax.set_xlim(1, 6.5)

29

menyimpan grafik

plt.savefig(‘foo.png’)

menampilkan grafik

plt.show()

6.3 Persiapan Data

Tahapan ini adalah tahapan untuk menyiapkan data, baik data 1D

maupun data 2D. Persiapan data dapat dilakukan dengan membaca

dari file (import file) atau dengan mengenerate data dengan program.

6.3.1 1D Data

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0, 10, 100)

y = np.cos(x)

z = np.sin(x)

6.3.2 2D Data atau Gambar

data = 2*np.random.random((10, 10))

data2 = 3*np.random.random((10, 10))

Y, X = np.mgrid[-3:3:100j, -3:3:100j]

U = -1 - X ** 2 + Y

V = 1 + X - Y ** 2

from matplotlib.cbook import get_sample_data img =

np.load(get_sample_data(‘axes_grid/

 bivariate_normal.npy’))

6.3.3 Import Spreadsheet

import pandas as pd

Load csv

df = pd.read_csv(‘example.csv’)

Load excel spreadsheet

xl = pd.ExcelFile(‘example.xlsx’)

Print sheet names

print(xl.sheet_names)

Load sheet ke sebuah DataFrame dengan nama:

 df1

df1 = xl.parse(‘Sheet1’)

6.3.4 Membuat Plot

fig = plt.figure()

fig2 = plt.figure(figsize=plt.figaspect(2.0))

Figure dan Axes

30

• Figure adalah seluruh window atau halaman. Kita dapat membuat

banyak figure. Sebuah figure dapat mengandung beberapa komponen

di dalamnya, seperti title, legend, axes, dan sebagainya.

• Axes adalah area di mana data akan divisualisaikan menggunakan

fungsi plot() atau scatter(). Di dalam figure bisa terdapat banyak axes.

fig.add_axes()

ax1 = fig.add_subplot(221) # row-col-num

ax3 = fig.add_subplot(212)

fig3, axes = plt.subplots(nrows=2,ncols=2)

fig4, axes2 = plt.subplots(ncols=3)

Melakukan Plot

Inisialisasikan figure dan axes yang akan dipakai

fig, ax = plt.subplots()

Menggambar titik dengan garis atau tanda yang menghubungkan

masing-masing titik

lines = ax.plot(x,y)

Menggambar titik yang terpisah, berbeda ukuran dan atau warnanya

ax.scatter(x,y)

Menggambar diagram batang vertikal

axes[0,0].bar([1,2,3],[3,4,5])

Menggambar diagram batang horisontal

axes[1,0].barh([0.5,1,2.5],[0,1,2])

Menggambar garis horisontal pada axes

axes[1,1].axhline(0.45)

Menggambar garis vertikal pada axes

axes[0,1].axvline(0.65)

Menggambar polygon tertutup warna tertutup

31

ax.fill(x,y,color=‘blue’)

Mewarnai antara y = nilai dan 0

ax.fill_between(x,y,color=‘yellow’)

Menampilkan dan Menyimpan Plot

Menampilkan plot grafik

plt.show()

Menyimpan figure

plt.savefig(‘foo.png’)

Menyimpan figure dengan background transparan

plt.savefig(‘foo.png’, transparent=True)

32

BAB 7

LIBRARY NUMPY

7.1 Pengantar NumPy

Topik utama dari NumPy adalah array multidimensi yang diindeks

oleh tuple atau pasangan bilangan bulat positif. Dalam NumPy

dimensi disebut sebagai axis, dan banyaknya axis disebut rank.

Sebagai contoh, koordinat sebuah titik diruang 3D dinyatakan sebagai

[1,2,1] yang merupakan sebuah array dengan rank 1 karena terdiri dari

satu axis. Sedangkan panjang axis tersebut adalah 3.

Pada contoh berikut, array-nya mempunyai rank 2. Axis pertama

panjangnya 2, dan axis kedua panjangnya 3.

[[1., 0., 0.],

 [0., 1., 2.]]

array NumPy disebut sebagai ndarray , atau dikenal juga dengan

sebutan array. Catat bahwa numpy.array tidak sama dengan array

Standard Python array.array, yang hanya bisa digunakan untuk array

satu dimensi dan dengan fitur yang lebih sedikit. Atribut yang paling

penting dari ndarray adalah:

ndarray.ndim banyaknya axis atau dimensi dari array. Di Python,

banyaknya dimensi disebut sebagai rank.

ndarray.shape dimensi dari array. Ini adalah pasangan bilangan bulat

yang menunjukkan ukuran array di setiap dimensi. Untuk

matriks dengan n baris dan m kolom, bentuknya adalah (n, m).

Panjang dari pasangan shape adalah rank, atau jumlah dimensi,

ndim.

ndarray.size jumlah elemen dari array. Ini sama dengan perkalian

elemen dari shape.

ndarray.dtype sebuah objek yang menggambarkan jenis elemen dalam

array. Seseorang dapat membuat atau menentukan jenis dtype

33

menggunakan jenis Python standar. Selain itu NumPy

menyediakan jenisnya sendiri. numpy.int32, numpy.int16, dan

numpy.float64 adalah beberapa contohnya.

ndarray.itemsize ukurandalambytedarisetiapelemenarray. Sebagai

contoh, sebuah array dari elemen tipe float64 memiliki

itemsize 8 (= 64/8), sedangkan satu dari tipe complex32

memiliki itemsize 4 (= 32/8). Ini sama dengan

ndarray.dtype.itemsize.

ndarray.data buffer yang mengandung elemen sebenarnya dari array.

Biasanya, kita tidak perlu menggunakan atribut ini karena kita

akan mengakses elemen dalam array menggunakan fasilitas

pengindeksan.

Contoh:

>>> import numpy as np

>>> a = np.arange(15).reshape(3, 5)

>>> a

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]])

>>> a.shape

(3, 5)

>>> a.ndim

2

>>> a.dtype.name

’int64’

>>> a.itemsize

8

>>> a.size

15

>>> type(a)

<type ’numpy.ndarray’>

>>> b = np.array([6, 7, 8])

>>> b

array([6, 7, 8])

>>> type(b)

<type ’numpy.ndarray’>

34

7.1.1 Membuat Array

Ada beberapa cara untuk membuat array. Misalnya, Anda dapat

membuat array dari list Python biasa atau pasangan menggunakan

fungsi array. Tipe array yang dihasilkan disimpulkan dari tipe elemen

dalam array.

>>> import numpy as np

>>> a = np.array([2,3,4])

>>> a

array([2, 3, 4])

>>> a.dtype

dtype(’int64’)

>>> b = np.array([1.2, 3.5, 5.1])

>>> b.dtype dtype(’float64’)

Kesalahan yang sering terjadi dalam pembuatan array diantaranya

adalah:

>>> a = np.array(1,2,3,4) # WRONG

>>> a = np.array([1,2,3,4]) # RIGHT

array mengubah barisan dari sebuah barisan menjadi array dua

dimensi, barisan dari barisan sebuah barisan menjadi array tiga

dimensi, dan seterusnya.

>>> b = np.array([(1.5,2,3), (4,5,6)])

>>> b

array([[1.5, 2. , 3.],

 [4. , 5. , 6.]])

Jenis array juga dapat secara eksplisit ditentukan pada saat

pembuatan:

>>> c = np.array([[1,2], [3,4]],

 dtype=complex)

>>> c

array([[1.+0.j, 2.+0.j],

 [3.+0.j, 4.+0.j]])

Seringkali, elemen dari sebuah array pada awalnya tidak diketahui,

namun ukurannya diketahui. Oleh karena itu, NumPy menawarkan

beberapa fungsi untuk membuat array yang memuat nilai awal. Hal

35

tersebut dapat meminimalkan pertumbuhan memori yang diperlukan

array , sebagai operasi yang dianggap mahal.

Fungsi zeros menciptakan sebuah array yang berisi angka nol, fungsi

ones yang menciptakan array yang berisi angka satu, dan fungsi empty

men ciptakan array yang isinya acak dan bergantung pada keadaan

memori. Secara default, dtype dari array yang dibuat adalah float64.

>>> np.zeros((3,4))

array([[0., 0., 0., 0.],

 [0., 0., 0., 0.],

 [0., 0., 0., 0.]])

>>> np.ones((2,3,4), dtype=np.int16) # dtype

 can also be specified

array([[[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]],

 [[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]]], dtype=int16)

>>> np.empty((2,3)) # uninitialized , output

 may vary

array([[3.73603959e-262, 6.02658058e-154,

 6.55490914e-260],

 [5.30498948e-313, 3.14673309e-307,

 1.00000000e+000]])

Untuk membuat barisan angka, NumPy menyediakan fungsi yang

mirip dengan range yang outputnya berupa array dan bukan berupa

list .

>>> np.arange(10,30,5)

array([10, 15, 20, 25])

>>> np.arange(0,2,0.3) # it accepts float

 arguments

array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

Jika arange digunakan dengan argumen floating point, biasanya sulit

memprediksi jumlah elemen yang diperoleh, karena presisi floating

point yang terbatas. Untuk itu, lebih baik menggunakan fungsi

36

linspace yang dapat menerima masukan berapa jumlah elemen yang

kita inginkan:

>>> from numpy import pi

>>> np.linspace(0,2,9) #9 numbers from 0 to 2

array([0.,0.25,0.5,0.75,1.,1.25,1.5,1.75,2.]) >>> x =

np.linspace(0,2*pi,100) #useful to

 evaluate function at lots of points

>>> f = np.sin(x)

7.1.2 Menampilkan Array

Saat kita menampilkan array , NumPy menampilkannya dengan cara

yang mirip dengan daftar bersarang, namun dengan tata letak berikut:

• axis terakhir dicetak dari kiri ke kanan,

• yang kedua sampai yang terakhir dicetak dari atas ke bawah,

• Sisanya juga dicetak dari atas ke bawah, dengan masing-

masing potongan dipisahkan oleh sebuah baris kosong.

array satu dimensi dicetak sebagai baris, array dua dimensi sebagai

matriks dan tridimensionals sebagai daftar matriks.

>>> a = np.arange(6) #1d array

>>> print(a)

[0 1 2 3 4 5]

>>>

>>> b = np.arange(12).reshape(4,3) # 2d array

>>> print(b)

[[0 1 2]

 [3 4 5]

 [6 7 8]

 [9 10 11]]

>>> c = np.arange(24).reshape(2,3,4) ’’’3d

 array’’’

>>> print(c)

[[[0 1 2 3]

 [4 5 6 7]

 [8 9 10 11]]

 [[12 13 14 15]

 [16 17 18 19]

 [20 21 22 23]]]

Jika a rray terlalu besar untuk ditampilkan, NumPy secara otomatis

memotong bagian tengah array dan hanya mencetak ujung-ujungnya:

37

>>> print(np.arange(10000))

[0 1 2 ..., 9997 9998 9999]

>>>

>>> print(np.arange(10000).reshape(100,100))

[[0 1 2 ..., 97 98 99]

 [100 101 102 ..., 197 198 199]

 [200 201 202 ..., 297 298 299]

 ...,

 [9700 9701 9702 ..., 9797 9798 9799]

 [9800 9801 9802 ..., 9897 9898 9899]

 [9900 9901 9902 ..., 9997 9998 9999]]

Untuk memaksa NumPy mencetak seluruh bagian array , kita dapat

mengubah opsi print menggunakan set_printoptions .

>>> np.set_printoptions(threshold=’nan’)

7.2 Operasi-operasi Dasar pada NumPy

Operator aritmatika pada array menggunakan aturan elementwise,

yaitu operasi diterapkan elemen per elemen. Sebuah array baru dibuat

dan diisi dengan hasilnya.

>>> a = np.array([20,30,40,50])

>>> b = np.arange(4)

>>> b

array([0, 1, 2, 3])

>>> c = a-b

>>> c

array([20, 29, 38, 47])

>>> b**2

array([0, 1, 4, 9])

>>> 10*np.sin(a)

array([9.12945251, -9.88031624, 7.4511316 , -

 2.62374854])

>>> a<35

array([True, True, False , False], dtype=bool)

Tidak seperti dalam banyak bahasa matriks, operator kali *

mengoperasikan perkalian elemen per elemen antar array NumPy.

Sedangkan perkalian matriks dapat dilakukan dengan menggunakan

fungsi dot atau cara sebagaimana berikut:

>>> A = np.array([[1,1],[0,1]])

>>> B = np.array([[2,0],[3,4]])

>>> A*B # elementwise product

38

array([[2, 0], [0, 4]])

>>> A.dot(B) # matrix product

array([[5, 4], [3, 4]])

>>> np.dot(A, B) # another matrix product

array([[5, 4], [3, 4]])

Beberapa operasi, seperti + = dan * = , berguna untuk memodifikasi

array yang ada bukan untuk membuat yang baru.

>>> a = np.ones((2,3), dtype=int)

>>> b = np.random.random((2,3))

>>> a *= 3

>>> a

array([[3, 3, 3], [3, 3, 3]])

>>> b += a

>>> b

array([[3.417022,3.72032449,3.00011437],

 [3.30233257,3.14675589,3.09233859]])

>>> a += b # b is not automatically converted

 to integer type Traceback (most recent call

 last):

...

TypeError: Cannot cast ufunc add output from

 dtype(’float64’) to dtype(’int64’) with

 casting rule ’same_kind’

Ketika mengoperasikan array dari berbagai tipe, tipe yang dihasilkan

adalah tipe yang lebih umum (perilaku ini dikenal sebagai upcasting).

>>> a = np.ones(3, dtype=np.int32)

>>> b = np.linspace(0,pi,3)

>>> b.dtype.name

’float64’

>>> c = a+b

>>> c

array([1. , 2.57079633, 4.14159265])

>>> c.dtype.name

’float64’

>>> d = np.exp(c*1j)

>>> d

array([0.54030231+0.84147098j,

 -0.84147098+0.54030231j,

 -0.54030231-0.84147098j])

>>> d.dtype.name

’complex128’

Operasi yang tidak biasa, seperti menghitung jumlah semua elemen

dalam array, diimplementasikan sebagai kelas ndarray .

39

>>> a = np.random.random((2,3))

>>> a

array([[0.18626021, 0.34556073, 0.39676747],

 [0.53881673, 0.41919451, 0.6852195]])

>>> a.sum()

2.5718191614547998

>>> a.min()

0.1862602113776709

>>> a.max()

0.6852195003967595

Secara default, operasi yang diberlakukan pada array adalah seperti

pada list yang berisi bilangan, terlepas dari bentuknya. Namun,

dengan menentukan parameter sumbu, Anda dapat menerapkan

operasi sepanjang sumbu yang ditentukan dari sebuah array:

>>> b = np.arange(12).reshape(3,4)

>>> b

array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]])

>>> b.sum(axis=0) # sum of each column

array([12, 15, 18, 21])

>>> b.min(axis=1) # min of each row

array([0, 4, 8])

>>> b.cumsum(axis=1) # cumulative sum along

 each row

array([[0, 1, 3, 6],

 [4, 9, 15, 22],

 [8, 17, 27, 38]])

7.3 Fungsi Universal

NumPy menyediakan fungsi matematika yang familiar seperti sin,

cos, dan exp. Dalam NumPy, ini disebut "fungsi universal" (ufunc).

Dalam NumPy, fungsi ini beroperasi secara elementer pada array,

menghasilkan array sebagai output.

>>> B = np.arange(3)

>>> B

array([0, 1, 2])

>>> np.exp(B)

array([1. , 2.71828183, 7.3890561])

>>> np.sqrt(B)

array([0. , 1. , 1.41421356])

>>> C = np.array([2., -1., 4.])

40

>>> np.add(B, C)

array([2., 0., 6.])

Coba juga: all, any, apply_along_axis, argmax, argmin, argsort,

average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod,

cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum, mean,

median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum,

trace, transpose, var, vdot, vectorize, where.

7.4 Indexing, Slicing and Iterating

Array satu-dimensi dapat diindeks, diiris dan diiterasi, seperti list dan

jenis barisan lain pada Python.

>>> a = np.arange(10)**3

>>> a

array([0, 1, 8, 27, 64, 125, 216, 343,

 512, 729])

>>> a[2]

8

>>> a[2:5]

array([8, 27, 64])

>>> a[:6:2] = -1000 # equivalent to a[0:6:2] =

 -1000; from start to position 6, exclusive,

 set every 2nd element to -1000

>>> a

array([-1000, 1, -1000, 27, -1000, 125, 216,

 343, 512, 729])

>>> a[: :-1] # reversed a

array([729, 512, 343, 216, 125, -1000, 27,

 -1000, 1, -1000])

>>> for i in a:

... print(i**(1/3.))

...

nan

1.0

nan

3.0

nan

5.0

6.0

7.0

8.0

9.0

41

Array multidimensi dapat memiliki satu indeks per axis. Indeks ini

diberikan dalam tuple yang dipisahkan koma:

>>> def f(x,y):

... return 10*x+y

...

>>> b = np.fromfunction(f,(5,4),dtype=int)

>>> b

array([[0, 1, 2, 3],

 [10, 11, 12, 13],

 [20, 21, 22, 23],

 [30, 31, 32, 33],

 [40, 41, 42, 43]])

>>> b[2,3]

23

>>> b[0:5, 1] # each row in the second column

 of b

array([1, 11, 21, 31, 41])

>>> b[: ,1] # equivalent to the previous

 example

array([1, 11, 21, 31, 41])

>>> b[1:3, :] # each column in the second and

 third row of b

array([[10, 11, 12, 13],

 [20, 21, 22, 23]])

Jika banyak indeks yang dimasukkan lebih sedikit dari dimensi array,

maka indeks yang tidak ditulis dianggap sebagai irisan lengkap:

>>> b[-1] # the last row. Equivalent to b[-1,:]

array([40, 41, 42, 43])

Ekspresi dengan tanda kurung dalam b[i] dianggap sebagai i diikuti

oleh ‘:’ yang diperlukan untuk mewakili dimensi yang tersisa. NumPy

juga membolehkan kita untuk menulis ini menggunakan titik sebagai

b[i, ...].

Titik-titik (...) mewakili banyak titik dua yang diperlukan untuk

menghasilkan pasangan pengindeksan yang lengkap. Misalnya, jika x

adalah array 5 dimensi, maka

• x[1,2,...] ekivalen dengan x[1,2,:,:,:] ,

• x[...,3] sampai x[:,:,:,:,3] dan

• x[4,...,5,:] sampai x[4,:,:,5,:].

42

>>> c = np.array([[[0, 1, 2], # a 3D array

 (two stacked 2D arrays)

... [10, 12, 13]],

... [[100,101,102],

... [110,112,113]]])

>>> c.shape

(2, 2, 3)

>>> c[1,...] # same as c[1,:,:] or c[1]

array([[100, 101, 102],

 [110, 112, 113]])

>>> c[...,2] # same as c[:,:,2]

array([[2, 13],

 [102, 113]])

Iterasi atas array multidimensi dilakukan sehubungan dengan sumbu

pertama:

>>> for row in b:

... print(row)

...

[0 1 2 3]

[10 11 12 13]

[20 21 22 23]

[30 31 32 33]

[40 41 42 43]

Namun, jika seseorang ingin melakukan operasi pada setiap elemen

dalam array, kita dapat menggunakan atribut datar yang merupakan

iterator atas semua elemen dari array:

>>> for element in b.flat:

... print(element)

...

0

1

2

3

10

11

12

13

20

21

22

23

30

31

32

43

33

40

41

42

43

7.5 Mengubah bentuk sebuah array

Array memiliki bentuk yang diberikan oleh jumlah elemen sepanjang

masing-masing sumbu:

>>> a = np.floor(10*np.random.random((3,4)))

>>> a

array([[2., 8., 0., 6.],

 [4., 5., 1., 1.],

 [8., 9., 3., 6.]])

>>> a.shape

(3, 4)

Bentuk array bisa diubah dengan berbagai perintah. Perhatikan bahwa

tiga perintah berikut semua mengembalikan array yang dimodifikasi,

namun jangan mengubah array aslinya:

>>> a.ravel() # returns the array , flattened

array([2., 8., 0., 6., 4., 5., 1., 1., 8., 9.,

 3., 6.])

>>> a.reshape(6,2) # returns the array with a modified

shape

array([[2., 8.],

 [0., 6.],

 [4., 5.],

 [1., 1.],

 [8., 9.],

 [3., 6.]])

>>> a.T # returns the array , transposed

array([[2., 4., 8.],

 [8., 5., 9.],

 [0., 1., 3.],

 [6., 1., 6.]])

>>> a.T.shape

(4, 3)

>>> a.shape

(3, 4)

Urutan elemen dalam array yang dihasilkan dari ravel () biasanya "C-

style", yaitu indeks paling kanan "berubah paling cepat", jadi elemen

44

setelah [0,0] adalah [0,1] . Jika array dibentuk kembali ke bentuk lain,

lagi-lagi array diperlakukan sebagai "Gaya C". NumPy biasanya

membuat array yang tersimpan dalam urutan ini, jadi ravel() biasanya

tidak perlu menyalin argumennya, tapi jika array dibuat dengan

mengambil irisan array lain atau dibuat dengan opsi yang tidak biasa,

mungkin perlu disalin. Fungsi ravel () dan reshape () juga dapat

diinstruksikan, dengan menggunakan argumen opsional, untuk

menggunakan array gaya FORTRAN, di mana indeks paling kiri

berubah paling cepat.

Fungsi reshape mengembalikan argumennya dengan bentuk yang

dimodifikasi, sedangkan metode ndarray.resize memodifikasi array

itu sendiri:

>>> a

array([[2., 8., 0., 6.],

 [4., 5., 1., 1.],

 [8., 9., 3., 6.]])

>>> a.resize((2,6))

>>> a

array([[2., 8., 0., 6., 4., 5.],

 [1., 1., 8., 9., 3., 6.]])

Jika dimensi diberikan sebagai -1 dalam operasi pengubah ukuran,

dimensi lainnya dihitung secara otomatis:

>>> a.reshape(3,-1)

array([[2., 8., 0., 6.],

 [4., 5., 1., 1.],

 [8., 9., 3., 6.]])

7.6 Menumpuk bersama array yang berbeda

Beberapa array dapat ditumpuk bersama-sama di sepanjang sumbu

yang berbeda:

>>> a = np.floor(10*np.random.random((2,2)))

>>> a

array([[8., 8.],

 [0., 0.]])

>>> b = np.floor(10*np.random.random((2,2)))

>>> b

array([[1., 8.],

45

 [0., 4.]])

>>> np.vstack((a,b))

array([[8., 8.],

 [0., 0.],

 [1., 8.],

 [0., 4.]])

>>> np.hstack((a,b))

array([[8., 8., 1., 8.],

 [0., 0., 0., 4.]])

Fungsi column_stack menumpuk array 1D sebagai kolom menjadi

array 2D. Ini setara dengan vstack hanya untuk array 1D:

>>> from numpy import newaxis

>>> np.column_stack((a,b)) # With 2D arrays

array([[8., 8., 1., 8.],

 [0., 0., 0., 4.]])

>>> a = np.array([4.,2.])

>>> b = np.array([2.,8.])

>>> a[:,newaxis] # This allows to have a 2D

 columns vector

array([[4.],

 [2.]])

>>> np.column_stack((a[:,newaxis],b[:,newaxis]))

array([[4., 2.],

 [2., 8.]])

>>> np.vstack((a[:,newaxis],b[:,newaxis]))

 # The behavior of vstack is different

array([[4.],

 [2.],

 [2.],

 [8.]])

Untuk array dengan lebih dari dua dimensi, tumpukan hstack di

sepanjang sumbu kedua mereka, tumpukan vstack di sepanjang

sumbu pertama mereka, dan concatenate memungkinkan sebuah

argumen opsional yang memberi jumlah sumbu yang dengannya

penggabungan tersebut harus terjadi.

Catatan

Dalam kasus kompleks, r_ dan c_ berguna untuk membuat array

dengan menumpuk angka sepanjang satu sumbu. Mereka

mengizinkan penggunaan literal jangkauan (":")

>>> np.r_[1:4,0,4]

46

array([1, 2, 3, 0, 4])

Bila digunakan dengan array sebagai argumen, r_ dan c_ mirip dengan

vstack dan hstack dalam perilaku default mereka, namun izinkanlah

argumen opsional yang memberi jumlah sumbu untuk

menggabungkannya.

7.7 Memecah Array Menjadi Beberapa Bagian yang

Lebih Kecil

Dengan menggunakan hsplit, Anda dapat membagi sebuah array di

sepanjang sumbu horisontalnya, dengan menentukan jumlah array

berbentuk sama untuk kembali, atau dengan menentukan kolom

setelah pembagian tersebut terjadi:

>>> a = np.floor(10*np.random.random((2,12)))

>>> a

array([[9., 5., 6., 3., 6., 8., 0., 7., 9.,

 7., 2., 7.],

 [1., 4., 9., 2., 2., 1., 0., 6., 2.,

 2., 4., 0.]])

>>> np.hsplit(a,3) # Split a into 3

[array([[9., 5., 6., 3.],

 [1., 4., 9., 2.]]),

 array([[6., 8., 0., 7.],

 [2., 1., 0., 6.]]),

 array([[9., 7., 2., 7.],

 [2., 2., 4., 0.]])]

>>> np.hsplit(a,(3,4)) # Split a after the

 third and the fourth column

[array([[9., 5., 6.],

 [1., 4., 9.]]),

 array([[3.],

 [2.]]),

 array([[6., 8., 0., 7., 9., 7., 2., 7.],

 [2., 1., 0., 6., 2., 2., 4., 0.]])]

vsplit terbagi sepanjang sumbu vertikal, dan array_split

memungkinkan seseorang untuk menentukan sepanjang sumbu mana

yang akan dipecah.

47

7.8 Menyalin dan menampilkan

Saat mengoperasikan dan memanipulasi array, datanya terkadang

disalin ke array baru dan terkadang tidak. Ini sering menjadi sumber

kebingungan bagi pemula. Ada tiga kasus: Jangan menyalin

semuanya, lihat atau salin dangkal, dan deep copy.

Jangan menyalin semuanya

Tugas sederhana tidak membuat salinan objek array atau datanya.

>>> a = np.arange(12)

>>> b = a # no new object is created

>>> b is a # a and b are two names for the same

 ndarray object True

>>> b.shape = 3,4 # changes the shape of a

>>> a.shape

(3, 4)

Python melewati objek yang bisa berubah sebagai referensi, jadi

pemanggilan fungsi tidak membuat salinan.

>>> def f(x):

... print(id(x))

...

>>> id(a) # id is a unique identifier of an

 object

148293216

>>> f(a)

148293216

Lihat atau Salin Dangkal

Objek array yang berbeda dapat berbagi data yang sama. Metode view

menciptakan objek array baru yang melihat data yang sama.

>>> c = a.view()

>>> c is a

False

>>> c.base is a # c is a view of the data owned

 by a True

>>> c.flags.owndata

False

>>> c.shape = 2,6 # a’s shape doesn’t change

>>> a.shape

(3, 4)

48

>>> c[0,4] = 1234 # a’s data changes

>>> a

array([[0, 1, 2, 3],

 [1234, 5, 6, 7],

 [8, 9, 10, 11]])

Slicing sebuah array mengembalikan pandangannya:

>>> s = a[: , 1:3] # spaces added for clarity;

 could also be written "s = a[:,1:3]"

>>> s[:] = 10 # s[:] is a view of s. Note the

 difference between s=10 and s[:]=10

>>> a

array([[0, 10, 10, 3],

 [1234, 10, 10, 7],

 [8, 10, 10, 11]])

Deep Copy

Metode copy membuat salinan lengkap dari array dan datanya.

>>> d = a.copy() # a new array object with new

 data is created

>>> d is a

False

>>> d.base is a # d doesn’t share anything

 with a

False

>>> d[0,0] = 9999

>>> a

array([[0, 10, 10, 3],

 [1234, 10, 10, 7],

 [8, 10, 10, 11]])

7.9 Aljabar Linier

Operasi-operasi Array

>>> import numpy as np

>>> a = np.array([[1.0, 2.0], [3.0, 4.0]])

>>> print(a)

[[1. 2.]

 [3. 4.]]

>>> a.transpose()

array([[1., 3.],

 [2., 4.]])

>>> np.linalg.inv(a)

49

array([[-2. , 1.],

 [1.5, -0.5]])

>>> u = np.eye(2) # unit 2x2 matrix; "eye"

 represents "I"

>>> u

array([[1., 0.],

 [0., 1.]])

>>> j = np.array([[0.0, -1.0], [1.0, 0.0]])

>>> np.dot(j, j) # matrix product

array([[-1., 0.],

 [0., -1.]])

>>> np.trace(u) # trace 2.0

>>> y = np.array([[5.], [7.]])

>>> np.linalg.solve(a, y)

array([[-3.],

 [4.]])

>>> np.linalg.eig(j)

(array([0.+1.j,0.-1.j]),

 array([[0.70710678+0.j, 0.70710678-0.j],

 [0.00000000-0.70710678j,

 0.00000000+0.70710678j]]))

7.10 Automatic Reshaping

Untuk mengubah dimensi array, Anda dapat menghilangkan salah

satu ukuran yang kemudian akan disimpulkan secara otomatis:

>>> a = np.arange(30)

>>> a.shape = 2,-1,3 # -1 means "whatever is

 needed"

>>> a.shape (2, 5, 3)

>>> a

array([[[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [9, 10, 11],

 [12, 13, 14]],

 [[15, 16, 17],

 [18, 19, 20],

 [21, 22, 23],

 [24, 25, 26],

 [27, 28, 29]]])

7.11 Penumpukan Vektor

Membentuk array 2D dari beberapa vektor baris di MATLAB dapat

dilakukan dengan cara yang cukup mudah, jika x dan y adalah dua

50

vektor dengan panjang yang sama, kita hanya perlu menuliskan m =

[x; y] .

Dalam NumPy hal tersebut dapat dilakukan dengan menggunakan

fungsi column_stack, dstack, hstack dan vstack , tergantung pada

dimensi array yang dikehendaki. Sebagai contoh:

x = np.arange(0,10,2) # x=([0,2,4,6,8])

y = np.arange(5) # y=([0,1,2,3,4])

m = np.vstack([x,y]) # m=([[0,2,4,6,8],

[0,1,2,3,4]])

xy = np.hstack([x,y])

xy =([0,2,4,6,8,0,1,2,3,4])

51

52

BAB 8

LIBRARY SYMPY

8.1 Pengantar SymPy

SymPy sangat berguna dalam melakukan perhitungan sains di Python,

seperti integral, turunan, interpolasi, limit, fungsi-fungsi transenden

dan lain sebagainya.

Sebagai contoh lihat perbedaan perhitungan antara

√ 9 dan √ 8 menggu nakan modul math dan sympy,

import math as mt

import sympy as sy

a = mt.sqrt(9)

b = sy.sqrt(9)

c = mt.sqrt(8)

d = sy.sqrt(8)

print(a,b)

print(c,d)

Print out dari kode Python diatas adalah

3.0 3

2.8284271247461903 2*sqrt(2)

Jika menggunakan modul math nilai dari √ 8 = 2.82..., sedangkan jika

menggunaan modul sympy nilai yang ditampilkan adalah 2 √ 2.

Pada SymPy variabel didefinisikan dengan symbols, sebagai contoh

mari kita definisikan persamaan matematika x + 2y

from sympy import symbols

x,y = symbols(’x y’)

expr = x + 2*y

print(expr)

print(expr-x)

print(expr**2)

Print out dari kode Python diatas adalah

x + 2*y

2*y

(x + 2*y)**2

53

Variabel yang didefinisikan dengan symbols juga dapat dioperasikan

dengan bilangan, sebagai contoh lihat kode berikut

expr

Out[7]: x + 2*y

expr+1

Out[8]: x + 2*y + 1

x*expr

Out[9]: x*(x + 2*y)

SymPy dapat digunakan untuk menyederhanakan persamaan,

mengintegralkan, menurunkan, menghitung limitnya, menyelesaikan

persamaan, dan masih banyak lagi. Berikut ini beberapa contoh yang

dapat dilakukan menggunakan SymPy.

from sympy import symbols , expand , factor

x,y = symbols(’x y’)

expr = x + 2*y

p1 = x*expr

p2 = expand(p1)

print(’expr = ’,expr)

print(’p1 =’,p1)

print(’p2 =’,p2)

Print out dari kode Python diatas adalah:

expr = x + 2*y

p1 = x*(x + 2*y)

p2 = x**2 + 2*x*y

Pada SymPy juga ada cara untuk mengubah tampilan dari Print out

menjadi lebih indah, lihat cara pemakaiannya pada contoh berikut

from sympy import *

x, t, z, nu = symbols(’x t z nu’)

init_printing(use_unicode=True)

p1 = sin(x)*exp(x)

p2 = diff(p1,x)

p3 = sin(x)*exp(x)+exp(x)*cos(x)

p4 = integrate(p3,x)

p5 = integrate(sin(x**2),(x,-oo,oo))

Selanjutnya pada console dapat kita ketikkan p1, p2, p3, p4, ataupun

p5 untuk melihat hasil dari kode Python diatas.

54

Gambar 8.1. Hasil print out SymPy dengan tampilan Unicode

Beberapa fungsi bawaan SymPy yang bisa digunakan diantaranya

adalah:

limit limit(sin(x)/x, x, 0)

solve solve(x**2-2, x)

dsolve y = Function(’y’)

dsolve(Eq(y(t)*diff(t,t)-y(t),exp(t)), y(t))

simplify simplify(sin(x)**2+cos(x)**2)

55

Gambar 8.2. Contoh penggunaan beberapa fungsi di SymPy

56

BAB 9

PEMROGRAMAN BERBASIS OBJEK DENGAN

PYTHON

9.1 Konsep Class dan Objek

9.1.1 Paradigma Pemrograman Berbasis Objek

Ada beberapa pendekatan atau paradigma yang dapat digunakan

dalam membuat program komputer, diantaranya yaitu pemrograman

prosedural dan pemrograman berbasis objek. Pemrograman

procedural dilakukan dengan menyusun program seperti resep dalam

bentuk perintah yang berurutan untuk menyelesaikan tugas. Program

dalam paradigma ini berdasarkan pada struktur informasi di dalam

memori dan manipulasi dari informasi yang disimpan tersebut.

Sedangkan pemrograman berorientasi objek merupakan paradigma

pemrograman yang berorientasikan kepada objek di mana semua data

dan fungsi di dalam paradigma ini dibungkus dalam kelas atau objek.

Setiap objek dapat menerima pesan, memproses data, dan mengirim

pesan ke objek lainnya.

Karena Python adalah bahasa pemrograman multi-paradigma, Anda

dapat memilih paradigma yang paling sesuai dengan masalah yang

ada, menggabungkan paradigma yang berbeda dalam satu program,

dan / atau beralih dari satu paradigma ke paradigma lain saat program

Anda berkembang.

Sebuah objek memiliki 2 karakteristik:

 Data atau informasi (attribute)

 Perilaku (method)

Misalnya: Mobil adalah sebuah objek sehingga dapat memiliki

informasi merk, warna, jenis, tahun dan dapat berperilaku berjalan

maju, berjalan maju, direm, dan lain-lain.

57

Konsep pemrograman berbasis objek berfokus pada pembuatan

program yang dapat digunakan berkali-kali atau biasa disebut dengan

DRY (Don't Repeat Yourself). Prinsip dasar pemrograman berbasis

objek adalah:

Encapsulation: Menyembunyikan informasi dari objek yang lain

sehingga hanya bisa diakses melalui method yang telah

dideskripsikan.

Inheritance: Proses menggunakan detil dari kelas baru tanpa

melakukan perubahan pada kelas yang sudah ada. Pewarisan sifat

pada kelas/objek turunannya.

Polymorphism: Konsep dalam menggunakan operasi atau method

yang sama dengan cara yang berbeda untuk data input yang berbeda.

Misalnya mengitung luas bidang segitiga dan lingkaran akan

menjalankan method yang sama tapi rumusnya berbeda.

9.1.2 Kelas (Class)

Sebuah kelas adalah cetak biru (blueprint) dari objek. Kelas

merupakan konsep atau deskripsi dari entitas yang menggambarkan

objek. Misalnya kita ingin membuat objek bank account (rekening

bank), maka kita membutuhkan deskripsi entitas bank account

tersebut secara umum. Sehingga kelas tersebut dapat berisi detil

informasi dari account, seperti nomor rekening (number), saldo

(balance), dan pemilik rekening (account holder), serta dapat

memiliki beberapa perilaku atau fungsi misalnya deposit, penarikan,

dan transfer.

Contoh mendefinisikan kelas Account tanpa atribut dan method

(ditandai dengan keyword pass) adalah sebagai berikut:

class Account:

 pass

Kita gunakan keyword class untuk mendefinisikan sebuah kelas. Kita

dapat membuat objek spesifik dari kelas yang sudah didefinisikan,

58

proses pembuatan objek dari kelas ini biasa disebut proses instansiasi

objek. Objek tidak dapat diinstansiasi tanpa adanya kelas.

9.1.3 Objek

Jika class adalah cetakan, maka sebuah objek adalah

salinan class dengan nilai sebenarnya. Secara harfiah, objek

merupakan milik class tertentu dan bukan konsep lagi namun sudah

menjadi objek yang sebenarnya, contohnya sebuah rekening Bank

Sukakaya dengan nomor rekening 12345 pemiliknya adalah Siti

dengan saldo sebesar 1 juta.

Cara melakukan instansiasi objek adalah seperti berikut:

>>> x = Account()

Jika kita cek variabel x, maka akan diberikan informasi bahwa

variabel tersebut adalah objek dari kelas Account.

>>> x

<__main__.Account object at 0x1004ccc90>

9.1.4 Method

Method adalah perilaku atau fungsi yang dapat dilakukan oleh objek.

Di Python, method didefinisikan seperti pendefinisian fungsi, namun

ada beberapa perbedaan, yaitu:

 Method dimiliki oleh kelas atau objek dan harus didefinisikan di

dalam kelas.

 Minimal harus ada satu parameter dalam method, yaitu self

yang merujuk kepada instansiasi objek dari kelas tersebut.

Parameter self selalu menjadi parameter yang pertama.

 Pada saat memanggil method, tidak perlu memberikan argumen

untuk parameter self.

Berikut ini contoh beberapa definisi method pada kelas Account,

sementara kita definisikan pass untuk isi dari masing-masing method,

yang artinya tidak melakukan apa-apa.

59

class Account:

 # Method

 def transfer(self, target, amount):

 pass

 def deposit(self, amount):

 pass

 def withdraw(self, amount):

 pass

 def setBalance(self, balance):

 pass

 def getBalance(self):

 pass

Pembahasan selanjutnya akan kita ganti definisi method yang berisi

pass di atas.

9.1.5 Instance Attributes

Semua objek harus dibuat dari kelas dan semua objek mengandung

karakteristik yang disebut atribut dan beberapa perilaku atau

fungsionalitas yang disebut method. Atribut yang dimiliki oleh setiap

objek hasil instansiasi kelas disebut instance attributes, nilai instance

attribute antara satu objek dengan objek lainnya dalam satu kelas bisa

berbeda.

Kita dapat menggunakan constructor method __init__() untuk

melakukan inisialisasi atribut dari objek dengan memberikan nilai

default kepada atribut tersebut. Constructor method adalah method

default yang secara otomatis akan dijalankan ketika kita melakukan

instansiasi objek.

 # Initializer / Instance Attributes

 def __init__(self, holder, number,

 balance=0):

 self.holder = holder

 self.number = number

 self.balance = balance

Kelas lengkapnya setelah ditambahkan constructor dan definisi dari

setiap method adalah seperti berikut (ganti keyword pass menjadi

instruksi berikut):

class Account:

60

 # Initializer / Instance Attributes

 def __init__(self, holder, number,

 balance = 0):

 self.holder = holder

 self.number = number

 self.setBalance(balance)

 # Method

 def deposit(self, amount):

 self.balance += amount

 def transfer(self, target, amount):

 if(self.balance - amount < 0):

 # Insufficient funds

 return False

 else:

 self.balance -= amount

 target.balance += amount

 return True

 def withdraw(self, amount):

 if (self.balance - amount < 0):

 # Insufficient funds

 return False

 else:

 self.balance -= amount

 return True

 def setBalance(self, balance):

 self.balance = balance

 def getBalance(self):

 return self.balance

Cara melakukan instansiasi objek dari kelas Account sekarang

menjadi:

>>> a1 = Account("Bill Gates",345267,13000)

>>> a1.getBalance()

13000

Nilai instance attribute otomatis diinisialisasi ketika proses

instansiasi sesuai data yang diberikan. Perhatikan jika kita tidak

memberikan argument untuk parameter balance, maka nilai default 0

akan diberikan pada atribut balance.

61

>>> a1 = Account("Bill Gates",345267)

>>> a1.getBalance()

0

9.1.6 Class Attribute

Di sisi lain, class attribute menempel pada semua objek dari kelas

tertentu dan memiliki nilai yang sama. Atribut ini dapat diakses dan

diubah oleh objek apa pun dari kelas tersebut.

Contoh penggunaan class attribute pada Account adalah dengan

menambahkan atribut counter jumlah objek rekening seperti berikut:

 class Account:

 # Class Attributes (same for all Account instance)

 counter = 0

 # Initializer / Instance Attributes

 def __init__(self, holder, number, balance=0):

 Account.counter += 1

 self.holder = holder

 self.number = number

 self.balance = balance

 # Method

 ...

Setelah kita buat kelas Account seperti di atas, kita coba buat instance

dan memanggil method-method-nya seperti berikut ini:

>>> a1 = Account("Bill Gates",345267,13000)

>>> a1.getBalance()

13000

>>> a2 = Account("Jack Ma",345289,3900)

>>> a2.getBalance()

3900

>>> Account.counter

2

>>> a1.transfer(a2, 1500)

True

>>> a1.getBalance()

11500

>>> a2.getBalance()

5400

>>> a2.withdraw(1000)

True

>>> a2.getBalance()

4400

62

Latihan

1. Tambahkanlah kelas AccountHolder yang mendeskripsikan

entitas pemegang rekening. Kelas tersebut menyimpan

informasi biodata pemegang rekening, yaitu nama lengkap

(surename), alamat (address), pekerjaan (profession), dan

tanggal lahir (birthday). Atribut nama, tanggal lahir, dan

pekerjaan harus diisi ketika melakukan pendaftaran. Terdapat

beberapa method dari kelas tersebut, yaitu merubah alamat

(setAddress), merubah pekerjaan (setProfession), mengambil

informasi nama (getName), mengambil informasi tanggal lahir

(getBirthday), mengambil informasi alamat (getAddress), dan

mengambil informasi pekerjaan (getProfession).

class AccountHolder:

 # Initializer / Instance Attributes

 # Method

2. Ubah holder pada kelas Account sehingga merujuk pada kelas

AccountHolder yang baru (buat contoh instansiasi objek

AccountHolder dan Account).

>>> person1 = AccountHolder("Bill Gates",

 "28-10-1955","CEO")

>>> # Lanjutkan

9.2 Encapsulation

9.2.1 Encapsulation

Kekurangan program Account pada kegiatan belajar sebelumnya

adalah setiap atribut dapat kita akses langsung dari objek dan kita juga

63

bisa mengganti nilainya secara leluasa sehingga integritas dan

kerahasiaan informasi objek tidak akan terjaga.

>>> a1 = Account("Bill Gates",345267,13000)

>>> a1.balance

13000

>>> a1.balance += 2500

>>> a1.balance

15500

Enkapsulasi adalah penyembuyian informasi class dan objek dari luar.

Konsep ini merupakan teknik yang membuat atribut class maupun

instance menjadi bersifat private dan menyediakan akses ke atribut

tersebut melalui method. Jika atribut di deklarasikan sebagai private,

maka atribut ini tidak bisa diakses oleh siapapun di luar class, dengan

demikian atribut disembunyikan di dalam class. Enkapsulasi secara

umum berkaitan dengan:

 Penyembunyian informasi (information hiding), dan

 Cara mengakses informasi private melalui method

9.2.2 Information Hiding

Kita bisa membatasi control akses dari atribut dengan

mendefinisikannya sebagai public, protected, atau private.

 Private: hanya bisa diakses dari kelas

 Protected: hanya bisa diakses dari kelas dan sub-kelasnya

 Public: dapat diakses oleh siapapun

Secara default, atribut yang didefinisikan di dalam kelas adalah atribut

public. Untuk mendefinisikannya sebagai private adalah dengan

menambahkan underscore dua kali (__) sebelum nama

variabel/atribut. Contoh: __holder, __number, __balance.

class Account:

 # Class Attributes (same for all Account instance)

 __counter = 0

 # Initializer / Instance Attributes

 def __init__(self, holder, number, balance=0):

 Account.__counter += 1

64

 self.__holder = holder

 self.__number = number

 self.__balance = balance

 # Method

 def deposit(self, amount):

 self.__balance += amount

 def transfer(self, target, amount):

 if(self.__balance - amount < 0):

 # Insufficient funds

 return False

 else:

 self.__balance -= amount

 target.setBalance(target.getBalance() +

amount)

 return True

 # ...

Sekarang coba akses kembali atribut pada kelas Account tersebut

langsung dari instance objeknya, maka nama atribut yang sudah

private tidak akan dikenali.

>>> a1 = Account("Bill Gates",345267,13000)

>>> a1.__balance

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 a1.__balance

AttributeError: 'Account' object has no attribute

'__balance'

9.2.3 Method Aksesor dan Mutator

Untuk mengakses atribut yang sudah dibuat menjadi private, harus

melalui method. Ada dua jenis method untuk keperluan ini, yaitu

method aksesor dan mutator. Method aksesor adalah method yang

digunakan untuk mengambil nilai sebuah atribut. Sedangkan method

mutator adalah method yang digunakan untuk memberikan nilai yang

baru ke atribut, sehingga membutuhkan adanya parameter nilai yang

akan diberikan. Kedua method ini biasa disebut method setter dan

getter, setter untuk mutator dan getter untuk aksesor.

65

Contohnya pada kelas Account, method setBalance() adalah

setter/mutator, dan method getBalance() adalah getter/aksesor.

Coba kita perbaiki kelas Account seperti berikut:

class Account:

 # Class Attributes (same for all Account instance)

 __counter = 0

 # Initializer / Instance Attributes

 def __init__(self, holder, number, balance=0):

 Account.__counter += 1

 self.__holder = holder

 self.__number = number

 self.__balance = balance

 # Method

 def deposit(self, amount):

 self.__balance += amount

 def transfer(self, target, amount):

 if(self.__balance - amount < 0):

 # Insufficient funds

 return False

 else:

 self.__balance -= amount

 target.setBalance(target.getBalance() +

amount)

 return True

 def withdraw(self, amount):

 if (self.__balance - amount < 0):

 # Insufficient funds

 return False

 else:

 self.__balance -= amount

 return True

 def setBalance(self, balance):

 self.__balance = balance

 def getBalance(self):

 return self.__balance

 # Accessor method for class attribute

 def getAccountCounter():

 return Account.__counter

66

Maka atribut yang sudah dirahasiakan hanya akan bisa diakses

melalui method setter atau getter.

>>> a1 = Account("Bill Gates",345267,13000)

>>> a1.getBalance()

13000

Latihan

1. Dari kelas AccountHolder pada latihan Subbab sebelumnya,

tambahkan enkapsulasi pada kelas tersebut dengan membuat

setiap atributnya menjadi private dan hanya bisa diakses melaui

method setter dan getter. Setiap atribut bisa diambil

informasinya melalui method getter, tetapi hanya atribut alamat

(address) dan pekerjaan (profession) yang bisa diubah nilainya

(punya method setter).

class AccountHolder:

 # Initializer / Instance Attributes

 # Method

2. Buat deskripsi kelas Vehicle (kendaraan) yang mendeskripsikan

entitas kendaraan. Kelas tersebut menyimpan informasi jenis

kendaraan (types), nomor kendaraan (number), warna

(color), tahun (year), dan kapasitas penumpang (capacity

dalam kg). Atribut jenis kendaraan dan tahun harus diisi ketika

membuat objek kendaraan yang baru. Tambahkan enkapsulasi

pada kelas tersebut dengan membuat setiap atributnya menjadi

private dan hanya bisa diakses melaui method setter dan getter.

Setiap atribut bisa diambil informasinya melalui method getter,

tetapi hanya atribut nomor kendaraan, warna, dan kapasitas yang

bisa diubah nilainya (punya method setter). Kemudian buat

instansiasi objek baru dari kelas Vehicle tersebut dan tunjukkan

bahwa kita tidak dapat mengakses langsung setiap atributnya

tanpa melalui setter dan getter! Tambahkan method untuk

berjalan dan direm!

67

class Vehicle:

 # Initializer / Instance Attributes

 # Method

 # Method berjalan

 # Method direm

3. Buat deskripsi kelas Point yang merepresentasikan sebuah titik.

Sebuah titik mempunyai informasi koordinat 2 dimensi (x, y).

Jika diinstansiasikan sebuah objek titik baru tanpa inisialisasi

koordinat x dan y, maka default koordinatnya adalah (0,0). Buat

semua atributnya menjadi private dan hanya mempunyai method

getter saja. Tambahkan method untuk melakukan translasi

(perpindahan) titik, misalkan sebuah titik ditranslasikan (2,-1),

maka titik akan berpindah dua satuan ke arah sumbu x positif

dan 1 satuan ke arah sumbu y negatif.

class Point:

 # Initializer / Instance Attributes

 # Method

 # Method translasi

9.3 Inheritance

9.3.1 Konsep Inheritance

Konsep inheritance ini mengadopsi dunia nyata di mana suatu

entitas/objek dapat mempunyai entitas/objek turunan. Suatu kelas

yang mempunyai kelas turunan dinamakan parent class atau

superclass, sedangkan kelas turunan itu sendiri disebut child class

atau subclass. Suatu subclass dapat mewarisi apa-apa yang dimiliki

oleh parent class.

Pewarisan adalah keuntungan besar dalam pemrograman berbasis

objek karena suatu sifat atau method didefinisikan dalam superclass,

68

sifat ini secara otomatis diwariskan dari semua subclass. Jadi, Anda

dapat menuliskan kode method hanya sekali dan mereka dapat

digunakan oleh semua subclass. Subclass hanya perlu

mengimplementasikan perbedaannya sendiri dan induknya.

Deklarasi subclass dilakukan dengan cara extend kelas dari

superclass-nya, superclass dituliskan dalam tanda kurung setelah

nama subclass. Contoh konsep inheritance misalnya kita membuat

kelas baru Cat dan Fish dari sebuah kelas yang lebih umum yaitu kelas

Pet. Ketiganya memiliki beberapa kesamaan atribut dan method,

misalnya nama (name) dan warna (color).

Pet

- name: String
- color: String

+ getName()
+ setName(name)
+ getColor()
+ setName(name)
+ eating()
+ sleeping()

Fish

- isSeaFish: boolean

+ swimming()

Cat

+ meowing()

Gambar 9.1. Contoh class diagram inheritance

Superclass Pet

class Pet:

 def __init__(self, name='no name', color='no color'):

 self.__name = name

 self.__color = color

 def getName(self):

 return self.__name

69

 def setName(self, name):

 self.__name = name

 def getColor(self):

 return self.__color

 def setColor(self, color):

 self.__color = color

 def eating(self):

 print(self.getName()+" is eating")

 def sleeping(self):

 print (self.getName()+" is sleeping")

Subclass Cat

class Cat(Pet):

 pass # Definisi subclass Cat dikosongi dulu

Subclass Fish

class Fish(Pet):

 pass # Definisi subclass Fish dikosongi dulu

Subclass Cat dan Fish akan memiliki atribut dan method yang sama

dengan kelas Pet. Coba buat objek baru dari kelas Cat dan Fish

kemudian panggil setiap method-nya.

9.3.2 Atribut dan Method Spesifik pada Subclass

Superclass adalah class yang sifatnya umum, semua atribut dan

method-nya akan diturunkan pada subclass. Subclass adalah kelas

yang lebih spesifik, sehingga kita dapat menambahkan atribut dan

atau method yang membedakannya dengan subclass yang lain.

Misalkan pada kelas Fish kita tambahkan informasi apakah hidup di

air laut atau tidak (isSeaFish) dengan tipe data boolean dan method

swimming(), sedangkan pada kelas Cat kita tambahkan method
meowing().

Kita dapat menambahkan spesifik atribut dengan membuat

constructor method subclass yang di dalamnya memanggil

constructor dari superclass dengan bantuan fungsi super(). Fungsi

super() adalah fungsi yang digunakan untuk memanggil method

70

superclass dari subclass-nya. Biasanya berguna ketika kita ingin

mendefinisikan isi method yang baru dari method yang sudah ada di

superclass (overriding method).

Subclass Fish

class Fish(Pet):

 # Contructor class Fish dengan tambahan atribut baru

 def __init__(self, name='no name', color='no color',

seaFish=True):

 super().__init__(name, color) # init method

superclass

 self.__isSeaFish = seaFish

 # Getter isSeaFish mengembalikan habitat Fish

 def getHabitat(self):

 if self.__isSeaFish:

 return "sea"

 else:

 return "freshwater"

 # Setter atribut isSeaFish

 def setIsSeaFish(self, seaFish):

 self.__isSeaFish = seaFish

 # Method swimming

 def swimming(self):

 print(self.getName()+" is swimming in the "+

self.getHabitat())

Coba buat objek baru dari kelas Fish dan panggil setiap method-nya.

Subclass Cat

class Cat(Pet):

 # Method meowing

 def meowing(self):

 print(self.getName()+" say meow!!")

Coba buat objek baru dari kelas Cat dan panggil method meowing().

9.3.3 Overriding Method

Sudah dijelaskan sebelumnya bahwa salah satu kegunaan fungsi

super() adalah untuk melakukan pembaruan method di subclass atau

bisa disebut overriding method. Itu berarti kita mempunyai nama

method yang sama dengan superclass namun isinya berbeda, salah

71

satu contohnya adalah method __init__() pada kelas Fish yang

sudah kita buat di atas.

Contoh lain misalnya kita ingin memperbarui deskripsi method

eating() pada kelas Cat, dan method sleeping() pada kelas Fish.

Subclass Fish

class Fish(Pet):

 # Contructor class Fish sama dengan sebelumnya ...

 # Setter dan Getter sama dengan sebelumnya ...

 # Overriding method sleeping

 def sleeping(self):

 print(self.getName()+" is sleeping in the water")

 # Method swimming sama seperti sebelumnya ...

Subclass Cat

class Cat(Pet):

 # Overriding method eating

 def eating(self):

 print(self.getName()+" is eating fish")

 # Method swimming sama seperti sebelumnya ...

Coba buat objek baru dari kelas Cat dan Fish kemudian panggil

method eating() dan sleeping().

>>> nemo = Fish("Nemo Clownfish", "orange")

>>> tom = Cat("Tom Cat", "gray")

>>> nemo.sleeping()

Nemo Clownfish is sleeping in the water

>>> tom.sleeping()

Tom Cat is sleeping

>>> nemo.eating()

Nemo Clownfish is eating

>>> tom.eating()

Tom Cat is eating fish

72

Latihan

1. Dari kelas Vehicle pada latihan Subbab sebelumnya, buatlah

subclass Car dan Train. Car memiliki atribut tambahan jumlah

pintu (numDoors) dan memiliki method turn() dengan

parameter “right” atau “left”. Kelas Train memiliki atribut

jumlah gerbong (numCarriage) dan ubah method untuk berjalan

sehingga menampilkan “kereta berjalan di atas rel”/“train

moving on the rail”.

2. Implementasikan inheritance pada class diagram berikut:

Mammal

- species: String
- age: integer

+ getSpecies()
+ setSpecies(species)
+ getAge()
+ setAge(age)
+ eating()

Herbivor

+ eating()

Carnivor

- food: Herbivor

+ getFood()
+ setFood(food)
- hunting()
+ eating()

Gambar 9.2. Class diagram Mammal

Jika dibuat instansiasi objek dan dipanggil method eating()

akan menghasilkan output seperti berikut:

73

Gambar 9.3. Contoh output program dengan kelas Mammal

9.4 Polymorphism

9.4.1 Konsep Polymorphism

Polymorfisme adalah konsep pemrograman berbasis objek yang

memungkinkan adanya beberapa objek berbeda kelas mempunyai

method yang sama namun definisinya disesuaikan dengan kelas objek

tersebut. Konsep ini berkaitan dengan overriding method yang

dijelaskan pada praktikum sebelumnya. Konsep ini juga bisa

berkaitan dengan inheritance.

Penerapan polymorfisme pada Python sangat sederhana dibandingkan

bahasa pemrograman yang lainnya karena diterapkan dengan cara

“duck-typing”, yaitu setiap objek tinggal kita panggil method-nya

maka output akan langsung menyesuaikan dengan kelasnya.

Misalkan kita mempunyai himpunan objek binatang peliharaan yang

bisa berisi objek-objek dari Cat dan Fish. Kita tidak perlu

mengelompokkan secara terpisah antara objek-objek dari kelas Cat

dengan objek-objek dari kelas Fish, cukup kita tampung dalam satu

variabel bertipe data kolektif, misalnya list.

List[0]:C

at

List[1]:Fi

sh

List[2]:Fi

sh

… List[n

]: Cat

Gambar 9.4. Contoh konsep polymorhism

ListHewanPeliharaan: list

74

9.4.2 Polymorfisme dengan Object Method

Untuk menunjukkan bagaimana Python dapat melakukan

polimorfisme pada setiap objek yang berbeda kelas dengan cara

memanggil method yang sama. Pertama kita perlu membuat looping

(bisa dengan for loop) yang akan melakukan iterasi pada setiap objek

di dalam list, tuple, atau tipe data koleksi lainnya. Kemudian kita

dapat memanggil method tanpa mempertimbangkan dari kelas mana

objek tersebut berasal, method yang dipanggil adalah method yang

ada pada semua kelas atau polymorphic method.

>>> nemo = Fish("Nemo Clownfish", "orange")

>>> tom = Cat("Tom Cat", "gray")

>>> for pet in

(nemo,tom,Fish("Dori","blue"),Jerry("Jerry", "brown")):

 pet.sleeping()

 pet.eating()

Nemo Clownfish is sleeping in the water

Nemo Clownfish is eating

Tom Cat is sleeping

Tom Cat is eating fish

Dori is sleeping in the water

Dori is eating

Jerry is sleeping

Jerry is eating fish

Contoh ini menunjukkan bahwa Python memanggil method

sleeping() dan eating() tanpa mengecek terlebih dahulu kelas dari

objek.

9.4.3 Polymorfisme dengan Fungsi

Kita bisa juga membuat sebuah fungsi dengan parameter sebuah

objek, objek ini bisa dari kelas apapun yang memiliki sifat

polymorfisme.

Misalnya kita membuat sebuah fungsi petActivity() dengan

parameter sebuah objek (bisa Cat maupun Fish). Sehingga kita bisa

memberikan instansiasi objek apapun ketika memanggil fungsi

tersebut.

75

>>> def petActivity(pet):

 pet.sleeping()

 pet.eating()

Kemudian dari instansiasi objek nemo dan tom sebelumnya, kita dapat

menjalankan action dari masing-masing objek dengan menjalankan

fungsi petActivity() yang sama.

>>> petActivity(nemo)

Nemo Clownfish is sleeping in the water

Nemo Clownfish is eating

>>> petActivity(tom)

Tom Cat is sleeping

Tom Cat is eating fish

Latihan

1. Buat instansiasi beberapa objek (minimal 6 objek) dari kelas

Vehicle, Train, dan Car yang disimpan dalam list atau tuple.

Kemudian panggil polymorphic method-nya menggunakan

looping! Bagaimanakah hasilnya? Tunjukkan!

2. Buat sebuah fungsi mammalActivity dengan parameter adalah

instansiasi objek dari kelas Mammal, Herbivor, dan Carnivor.

Fungsi tersebut memanggil polymorphic method dari kelas

Mammal dan turunannya. Kemudian buat beberapa instansiasi

objek (minimal 5) dari kelas-kelas tersebut dan panggil fungsi

mammalActivity dengan memberikan masing-masing objek

sebagai argumen! Bagaimanakan hasilnya? (Tunjukkan)

3. Tambahkan sebuah method berjalan pada kelas Mammal yang

menampilkan teks jenis spesies mamalia sedang berjalan.

Kemudian tunjukkan polimorfisme antara kelas Vehicle dan

kelas Mammal yang baru dengan cara object method maupun

dengan fungsi!

76

BAB 10

PEMROGRAMAN GUI DENGAN PYTHON DAN

PYQT5

10.1 Pengenalan GUI dengan PyQt5

10.1.1 Paradigma Pemrograman GUI

Jika sebelumnya kita hanya berkutat pada pembuatan program

menggunakan Command Line Interpreter (CLI), pada praktikum kali

ini kita akan membahas tentang bagaimana kita membuat Graphical

User Interface (GUI) di Python. Jika kita ingin membuat sebuah

aplikasi yang mudah digunakan oleh user, maka kita harus membuat

antarmuka yang interaktif dan menarik. Banyak toolkit yang

disediakan di Python untuk membantu kita membangun antarmuka

yang interaktif. Beberapa diantaranya adalah:

• Tkinter: termasuk ke dalam Tk package, merupakan standard

toolkit GUI di Python

• PyQt: satu paket dalam framework aplikasi Qt

• wxPython: termasuk ke dalam wxWidgets C++ library

Pada praktikum ini akan digunakan PyQt5 di mana dengan toolkit ini

kita dapat membuat sebuah antarmuka yang sangat menarik dan juga

dokumentasi PyQt5 ini sudah sangat bagus. Pembuatan GUI dengan

PyQt5 ini dipermudah dengan adanya QtDesigner di mana kita tinggal

menambahkan komponen yang kita inginkan.

10.1.2 GUI dengan PyQt5

PyQt5 ini adalah sebuah GUI toolkit yang multiplatform, yang berisi

hampir 1000 kelas yang terbagi ke sekitar 38 modul, beberapa

diantaranya adalah:

• QtCore: berisi kelas-kelas utama, termasuk event loop dan

mekanisme signal dan slot pada Qt.

77

• QtGui: berisi kelas-kelas yang terkait sistem integrasi pada

window, event handling, grafik 2D, font dan teks.

• QtWidgets: berisi kelas-kelas yang menyediakan set elemen UI

untuk membuat classic desktop-style interface, seperti button,

textfield, dll.

Untuk memulainya harus sudah terinstall lebih dulu toolkit PyQt5 di

komputer atau laptop. Pemrograman GUI tidak begitu berbeda dengan

pemrograman objek dengan CLI. Perbedaannya hanyalah

penggunaan toolkit dan programmer harus menyesuaikan pola dari

program yang sudah didesain oleh toolkit tersebut. Dengan kata lain

pemrograman GUI berarti pemrograman berbasis objek dengan

sebuah event-driven framework, atau aplikasi yang merespon

terhadap adanya event dari user. Misalnya jika user menekan sebuah

tombol, maka program akan melakukan suatu aksi. Programer yang

menentukan aksi apa yang akan dilakukan setiap ada event eksternal.

10.2 Membuat Window Awal

Perhatikan contoh program berikut:

import sys

from PyQt5 import QtWidgets

if __name__ == "__main__":

 app = QtWidgets.QApplication(sys.argv)

 mainWindow = QtWidgets.QWidget()

 mainWindow.show()

 app.exec_()

Penjelasan dari program tersebut adalah sebagai berikut:

import sys: Sys merupakan sebuah modul yang perlu diimport ke

setiap program yang dibuat menggunakan PyQt karena kita akan

memanggil sys.argv pada saat menginstansiasi objek dari kelas

QApplication.

78

from PyQt5 import QtWidgets: untuk melakukan impor modul

QtWidgets.

app = QtWidgets.QApplication(sys.argv): adalah perintah untuk

menginstansiasi objek dari kelas QApplication, setiap program yang

ditulis menggunakan PyQt harus memiliki objek tersebut. Sys.argv

adalah kumpulan argumen yang diberikan kepada script Python.

mainWindow = QtWidgets.Qwidget():untuk membuat objek dari

kelas QWidget, dalam contoh tersebut objek diperankan sebagai

frame utama dari program yang kita buat.

mainWindow.show():untuk menampilkan frame utama beserta

kontrol-kontrol yang ada di dalmanya.

app.exec_(): merupakan pengulan utama dari aplikasi (main loop).

Form akan ditampilakn secara terus menerus sampai ada tindakan dari

user.

Program tersebut akan menampilkan sebuah window kosong seperti

berikut:

Gambar 10.1. Tampilan window kosong dengan PyQt5

79

Dari pada menggunakan pendekatan procedural seperti contoh di atas,

kita akan merubah antarmuka tersebut menggunakan pendekatan

berbasikan objek seperti berikut.
import sys

from PyQt5 import QtWidgets

class NewWindow(QtWidgets.QWidget):

 def __init__(self):

 QtWidgets.QWidget.__init__(self)

 self.setGeometry(200,200,400,200)

 self.setWindowTitle("Aplikasi GUI Sederhana")

 self.show()

if __name__ == "__main__":

 app = QtWidgets.QApplication(sys.argv)

 mainWindow = NewWindow()

 app.exec_()

10.2.1 Kelas QWidget

Pada contoh sebelumnya kita dapat melihat bahwa instansiasi objek

dari kelas QWidget dapat menghasilkan sebuah window baru. Namun

kelas QWidget sebenarnya dalah kelas dasar (superclass) bagi semua

elemen UI. Beberapa contoh kelas yang mewarisi kelas QWidget

adalah:

 QProgressBar

 QPushButton

 QCheckBox

 QScrollBar

 dll.

Kelas QWidget juga mendefinisikan beberapa fungsi dasar yang

umum untuk semua widget.

 QWidget.geometry() dan
Qwidget.setgeometry(x, y, w, h)

 QWidget.resize(w, h)

 QWidget.setParent(parent)

80

 QWidget.setToolTip(str),

QWidget.setStatusTip(str)

 QWidget.setPalette(palette)

Mari kita coba membuat button pada window dengan contoh script

berikut:
import sys

from PyQt5 import QtWidgets

class NewWindow(QtWidgets.QWidget):

 def __init__(self):

 QtWidgets.QWidget.__init__(self)

 self.setup()

 def setup(self):

 self.setGeometry(200,200,400,200)

 self.setWindowTitle("Aplikasi GUI Sederhana")

 self.startBtn = StartBtn(self)

 self.quitBtn = QuitBtn(self)

 self.show()

class StartBtn(QtWidgets.QPushButton):

 def __init__(self,parent):

 QtWidgets.QPushButton.__init__(self,parent)

 self.setText("START")

 self.move(20,160)

class QuitBtn(QtWidgets.QPushButton):

 def __init__(self,parent):

 QtWidgets.QPushButton.__init__(self,parent)

 self.setText("EXIT")

 self.move(150,160)

if __name__ == "__main__":

 app = QtWidgets.QApplication(sys.argv)

 mainWindow = NewWindow()

 app.exec_()

Maka ketika dijalankan akan menampilkan window seperti berikut:

81

Gambar 10.2. Tampilan window dengan dua buah button

10.3 Signal dan Slots

PyQt5 menggunakan mekanisme signal/slots untuk mendefinisikan

sebuah aksi ketika ada event yang terjadi. Sebuah signal akan

dikeluarkan ketika terjadi sebuah event tertentu. Widgets sudah

memiliki beberapa signal yang telah didefinisikan, namun kita juga

bisa menambahkan signal sendiri di dalam subclass widgets.

Beberapa signal pada elemen QPushButton adalah:

 QPushButton.clicked

 QPushButton.pressed

 QPushButton.released

Slot adalah sebuah fungsi yang akan dipanggil untuk merespon

sebuah signal. Widgets sudah memiliki slot yang telah didefinisikan,

namun kita juga dapat secara mudah mendefinisikan slot kita sendiri.

Contoh program kita sebelumnya, tidak akan ada aksi apa-apa ketika

sebuah button diklik. Coba kita tambahkan sebuah signal/slot ketika

button Exit diklik. Maka signal yang digunakan adalah

QPushButton.clicked dan slot-nya adalah

QWidgets.qApp.quit(), di mana QtWidgets.qApp adalah

instance dari QApplication yang sedang berjalan.

82

class QuitBtn(QtWidgets.QPushButton):

 def __init__(self,parent):

 QtWidgets.QPushButton.__init__(self,parent)

 self.setText("EXIT")

 self.move(150,160)

 self.clicked.connect(parent.close)

Maka ketika button Exit di klik, window akan tertutup.

Kita bebas mendefinisikan perilaku dari aplikasi yang kita buat

dengan melakukan overriding method yang sudah ada. Misalnya

QtWidgets.QWidget memiliki method closeEvent bawan, di mana

akan dipanggil ketika ada request untuk menutup aplikasi. Secara

default, aplikasi akan selalu menerima request dan menutup window.

Kita akan mencoba memberikan pop-up window (message box) untuk

memberikan klarifikasi untuk menutup window.
class NewWindow(QtWidgets.QWidget):

 def __init__(self):

 ...

 def setup(self):

 ...

 # override method closeEvent seperti berikut

 def closeEvent(self, event):

 reply = QuitMessage().exec_()

 if reply == QtWidgets.QMessageBox.Yes:

 event.accept()

 else:

 event.ignore()

Tambahkan kelas QuitMessage berikut

class QuitMessage(QtWidgets.QMessageBox):

 def __init__(self):

 QtWidgets.QMessageBox.__init__(self)

 self.setText("Apakah yakin akan keluar?")

 self.addButton(self.No)

 self.addButton(self.Yes)

83

Gambar 10.3. Contoh signal-slots saat keluar window

84

10.4 Layouting

PyQt API menyediakan kelas untuk mengatur tata letak untuk

pengaturan posisi widget yang lebih elegan. Keuntungan dari layout

manager ini dibandingkan menggunakan posisi absolut biasa adalah:

 Widget di dalam window secara otomatis diresize

 Memastikan tampilan yang seragam pada perangkat dengan

resolusi layar yang berbeda

 Menambah atau menghapus widget secara dinamis tanpa harus

mendesain ulang

QLayout adalah superclass dari kelas turunan QBoxLayout,

QGridLayout, dan QFormLayout.

10.4.1 Kelas QBoxLayout

Kelas QBoxLayout dapat menata widget secara vertikal atau

horizontal. Kelas turunannya adalah QVBoxLayout (untuk mengatur

widget secara vertikal) dan QHBoxLayout (untuk mengatur widget

secara horizontal).

Contoh 1: Vertikal Layout

Di contoh ini dua tombol ditambahkan dalam layout vertikal box.

Ruang kosong yang dapat direntangkan ditambahkan di antara tombol

tersebut dengan metode addStretch(). Oleh karena itu, jika window

diubah ukurannya, posisi tombol secara otomatis disesuaikan.

import sys

from PyQt5.QtWidgets import *

class MyApp(QWidget):

 def __init__(self):

 super().__init__()

 self.title = "PyQt Vertical Box Layout"

 self.initUI()

 def initUI(self):

 b1=QPushButton("Button1")

 b2=QPushButton("Button2")

 vbox=QVBoxLayout()

 vbox.addWidget(b1)

85

 vbox.addStretch()

 vbox.addWidget(b2)

 self.setLayout(vbox)

 self.setWindowTitle(self.title)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 win = MyApp()

 app.exec_()

Tampilan awal program Setelah diresize, posisi dan ukuran tombol

berubah seraca dinamis

Gambar 10.4. Contoh vertikal box layout

Contoh 2: Nested Box Layout

Contoh berikut menunjukkan bagaimana layout dapat dibuat secara

bersarang. Di sini 2 tombol ditmbahkan ke layout vertikal. Kemudian,

objek layout horizontal dengan 2 tombol di dalamnya, ditambahkan

ke dalam layout vertikal. Akhirnya, objek layout vertikal diterapkan

ke window dengan method setLayout().

import sys

from PyQt5.QtWidgets import *

class MyApp(QWidget):

 def __init__(self):

 super().__init__()

 self.title = "PyQt Box Layout"

 self.initUI()

86

 def initUI(self):

 b1 = QPushButton("Button1")

 b2 = QPushButton("Button2")

 vbox = QVBoxLayout()

 vbox.addWidget(b1)

 vbox.addStretch()

 vbox.addWidget(b2)

 b3 = QPushButton("Button3")

 b4 = QPushButton("Button4")

 hbox = QHBoxLayout()

 hbox.addWidget(b3)

 hbox.addWidget(b4)

 vbox.addLayout(hbox)

 self.setLayout(vbox)

 self.setWindowTitle(self.title)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 win = MyApp()

 app.exec_()

Tampilan awal program Setelah diresize, posisi dan ukuran tombol

berubah seraca dinamis

Gambar 10.5. Contoh nested box layout

10.4.2 Kelas QGridLayout

Objek kelas QGridLayout menampilkan grid sel yang disusun dalam

baris dan kolom. Kelas berisi metode addWidget(). Widget apa pun

dapat ditambahkan dengan menentukan jumlah baris dan kolom sel.

Kita dapat menambahkan parameter faktor rentang untuk baris serta

kolom, jika diberikan parameter ini membuat widget lebih lebar atau

87

lebih tinggi dari sel lainnya. Dua penerapan metode addWidget()

adalah sebagai berikut:

Tabel 10.1. Penerapan Metode addWidget()

addWidget(QWidget, int r, int c)

Menambahkan widget pada baris dan kolom yang

ditentukan

addWidget(QWidget, int r, int c, int

rowspan, int columnspan) Menambahkan widget pada baris dan kolom yang

ditentukan dan memiliki lebar dan / atau tinggi yang

ditentukan

Objek Layout lain juga dapat ditambahkan di sel mana pun di grid

untuk membuatnya bersarang.

Tabel 10.2. Penerapan Metode addLayout()

addLayout(QLayout, int r, int c)

Menambahkan objek layout pada baris dan kolom yang

ditentukan

Contoh

Kode berikut membuat grid layout dari 16 tombol diatur dalam grid

dengan 4 baris dan 4 kolom.

import sys

from PyQt5.QtWidgets import *

class MyApp(QWidget):

 def __init__(self):

 super().__init__()

 self.title = "PyQt Grid Layout"

 self.initUI()

 def initUI(self):

 grid = QGridLayout()

 for i in range(1,5):

 for j in range(1,5):

grid.addWidget(QPushButton("Btn"+str(i)+str(j)),i,j)

 self.setLayout(grid)

88

 self.setWindowTitle(self.title)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 win = MyApp()

 app.exec_()

Gambar 10.6. Contoh grid layout

10.4.3 Kelas QFormLayout

QFormLayout adalah cara mudah untuk membuat dua bentuk kolom,

di mana setiap baris terdiri dari input yang terkait dengan label. Kolom

kiri berisi label dan kolom kanan berisi kolom input. Tiga overload

method addRow() adalah sebagai berikut:

Tabel 10.3. Tiga Penerapan Metode addRow()

addRow(QLabel,

QWidget)

Menambahkan baris yang berisi label

dan bidang masukan

addRow(QLabel,

QLayout)

Menambahkan tata letak anak di

kolom kedua

addRow(QWidget)
Menambahkan widget yang

mencakup kedua kolom

89

Contoh

Kode ini menambahkan objek QLineEdit untuk memasukkan nama di

baris pertama. Kemudian ditambahkan layout vertikal untuk dua input

alamat di kolom kedua pada baris berikutnya. Selanjutnya, objek

layout horizontal yang berisi dua kolom Radio button ditambahkan di

kolom kedua pada baris ketiga. Baris keempat diberikan dua tombol

‘Submit’ dan ‘Cancel’.

import sys

from PyQt5.QtWidgets import *

class MyApp(QWidget):

 def __init__(self):

 super().__init__()

 self.title = "PyQt Grid Layout"

 self.initUI()

 def initUI(self):

 fbox = QFormLayout()

 l1 = QLabel("Nama")

 nm = QLineEdit()

 l2 = QLabel("Alamat")

 add1 = QLineEdit()

 add2 = QLineEdit()

 fbox.addRow(l1,nm)

 vbox = QVBoxLayout()

 vbox.addWidget(add1)

 vbox.addWidget(add2)

 fbox.addRow(l2,vbox)

 hbox = QHBoxLayout()

 r1 = QRadioButton("L")

 r2 = QRadioButton("P")

 hbox.addWidget(r1)

 hbox.addWidget(r2)

 fbox.addRow(QLabel("Gender"),hbox)

fbox.addRow(QPushButton("Submit"),QPushButton("Cancel"))

 self.setLayout(fbox)

 self.setWindowTitle(self.title)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 win = MyApp()

 app.exec_()

90

Gambar 10.7. Contoh tampilan form layout

10.5 Menggunakan GtDesigner untuk Merancang GUI

Instalasi PyQt dilengkapi dengan tools untuk merancang GUI dengan

mudah yang disebut QtDesigner. Tools ini menggunakan antarmuka

drag and drop sederhana, sehingga GUI dapat dengan cepat dibuat

tanpa harus menulis kode. Namun, QtDesigner tidak memiliki

fasilitas untuk menulis kode program sehingga sedikit susah untuk

melakukan debug dan membangun aplikasi.

Pembuatan antarmuka GUI menggunakan QtDesigner dimulai

dengan memilih top level window untuk aplikasi.

Kemudian Anda dapat drag and drop widget yang diperlukan dari

kotak widget di sebelah kiri. Anda juga dapat menetapkan nilai ke

properti widget yang diletakkan pada form.

Desain GUI yang dirancang dengan QtDesigner disimpan sebagai file

dengan ekstensi *.ui. File ui ini berisi representasi XML widget dan

propertinya. File desain ini perlu diterjemahkan ke dalam kode setara

Python dengan menggunakan perintah pyuic5 dari command prompt

(windows) atau terminal (linux/mac). Penggunaan pyuic5 adalah

sebagai berikut:

 pyuic5 –x namafile.ui –o namafile.py

91

Gambar 10.8. Window awal QtDesigner untuk membuat desain

baru

92

Gambar 10.9. Tampilan beberapa toolbox pada lembar kerja

QtDesigner

