MODUL PRAKTIKUM

KECERDASAN
BUATAN

Program Studi Matematika

Fakultas Sains dan Teknologi
UIN Maulana Malik Ibrahim Malang

MODUL 1
INTELLIGENT AGENT

1.1. Tujuan Praktikum
Mahasiswa diharapkan memahami konsep agent, relational agent, dan cara merancang
sebuah struktur agent. Pada praktikum ini, mahasiswa akan berlatih membuat sebuah struktur agent

Robot Pembersih (Vacuum Cleaner).

1.2. Dasar Teori
1.2.1. Definisi Agent, Relational Agent, dan Task Environment
Agen (Agent) merupakan sesuatu yang dapat menerima inputan dari lingkungan sekitar

(enviroment) melalui pendeteksi (sensor) dan merespon hasil inputan dengan sebuah aksi/tindakan
melalui suatu penggerak (actuator). Agen dapat berupa manusia, robot, dan software. Manusia
mempunyai mata, telinga, lidah, hidung, dan kulit sebagai sensor dan kaki, tangan, dan gigi sebagai
actuator. Pada robot, kamera, sinar infra red, pendeteksi sidik jari merupakan sensor sedangkan alat-
alat penggerak (hidrolik) adalah actuator. Adapun sensor pada agen software adalah keyboard, file
contents, dan network packets sedangkan actuator nya adalah proses penampakan objek pada screen,
penulisan ke dalam file, dan pengiriman paket data ke dalam jaringan.

Sebuah agen tidak hanya bertindak untuk mencapai tujuannya saja, namun dia juga harus
mampu memilih tindakan yang tepat sehingga tindakan yang dilakukannya itu bermanfaat. Jika
sebuah agen bertindak secara efektif dengan memaksimumkan ukuran kinerja, merekam semua hal
yang diamatinya, dan bertindak dengan tepat, maka agen ini disebut Relational Agent. Relational
egent dapat diukur melalui kinerja dari agent (performance measure). Sebagai contoh, mahasiswa
harus mempunyai Indek Prestasi Komulatif (IPK) yang bagus untuk memperoleh gelar sarjana.
Pegawai harus mempunyai gaji bulanan untuk menjadi orang kaya.

Menurut Russel dan Norvig, ketika sebuah agent dirancang maka hal pertama yang harus
didefinisikan adalah Task Environment yaitu Percept (inputan indera si agen), Action (tindakan yang
dilakukan oleh agen), Goal (tujuan si agen), dan Environment (lingkungan dimana si agen berada). Ini
sering disingkat dengan PAGE.

Konsep agent, relational agent, dan task environment dapat dijelaskan melalui Gambar 1.1.

sensors

. percepts Y
/ \ \ a1 2
| environment | \ P ;
. A7 = agen

~./ actions ¥ £) ol
3 4 \\ ‘Z>
/ - ",/_p v
actuators

Gambar 1.1 : Agent dan Task Environment

Berikut adalah contoh Agen Robot Pembersih Lantai (Vacuum Cleaner) bertugas membersihkan
lantai yang penuh dengan sampah pada dua lokasi A dan B.
o Percept: Alat Pembersih
e Action: membersihkan sampah, memindahkan agen ke kiri, memindahkan agen ke kanan,
dan tidak istirahat (agen tidak melakukan apa-apa).
e Goal: membersihkan sampai pada kedua lokasi.

e Environment: lokasi dengan sampah dan lokasi yang sudah bersih.

1.2.2. Perancangan dan Struktur Agent
Perancangan sebuah agent dapat dilakukan melalui dua langkah. Langkah-langkah tersebut
adalah Agent Function dan Agent Program. Agent program tidak dapat diimplementasikan sebelum

Agent Function dirancang.

Definisi: Agent Function adalah sebuah fungsi yang memetakan semua urutan inputan (percept
sequence) terhadap tindakan (action) yang dilakukan.
Fipx—> A

Definisi: Agent Program adalah sebuah program yang mengimplementasikan fungsi F terhadap

perancangan agent.

1.3. Perancangan Agent Robot Pembersih (Vacuum Cleaner).
Pada pertemuan praktikum ini, mahasiswa dimintakan membuat perancangan agent Robot
Pembersih. Gambar 1.2 menunjukkan posisi robot dan lokasi yang akan dibersihkan.

Lokasi A Lokasi B

Gambar 1.2. Robot Vacuum Cleaner

Langkah-langkah untuk merancang struktur agent Robot Vacuum Cleaner adalah:
1. Mendefinisikan Task Environment:
e Percepts: lokasi dan status, misal: [A,Kotor]
Contoh: Percept Sequence (urutan inputan)
{[A,Kotor], [A,Bersih], [B, Kotor], [B, Bersih],....}
{[A,Kotor], [A,Kotor], [A, Kotor], [A,Bersih],....}
e Acton: DoKekiri, DoKekanan, DoSedot, DoSantai
e Goal: membersihkan kotoran pada kedua lokasi
e Environment: lokasi A dan B beserta kotorannya

2. Membuat Agent Function RobotPembersih

F{...,[*,Kotor]}) — doSedot
F{...,[A,Bersih]}) » doKeKanan
F{...,|B, Bersih]}) — doKeKiri
3. Mengimplementasikan Agent Program RobotPembersih

function RobotPembersih (status,lokasi) return action
If status:=kotor then return doSedot
else if lokasi := A then return doKeKanan
else return doKeKiri
end function

1.4. Mengimplementasikan Agent Menggunakan Java Applet.

1.4.1. Membuat GUI Robot Vacuum Cleaner dan doSedot()
/*

* Mengimplementasikan Robot Vacuum Cleaner dengan method doSedot ()
* menggunakan metode Simple Based Agent.
*/

package Jjavaapplication3;

import Jjava.applet.Applet;

import Jjava.awt.*;

import Jjava.awt.event.ActionEvent;
import Jjava.awt.event.ActionListener;

/**
*

* @author Irvanizam Zamanhuri
* Date : 01 Oktober 2013
*/

public class RobotMakan extends Applet implements ActionListener{

private Image robot image;

Button b;

int x = 30, y = 30; //posisi sampah
int statusMulutRobot = 300; //robot buka mulut
/**

* Initialization method that will be called after
* the applet is loaded into the browser.

*/
public void init () {

// TODO start asynchronous download of heavy resources

b = new Button ("Run");
setLayout (new BorderLayout());
add ("South",b) ;

b.addActionListener (this);

}

//TODO overwrite start (), stop()
public void paint(Graphics g)
{

and

super.paint(g);

// menggambar robot dengan mulut
g.fillArc(100, 50, 100, 100, O,

//menggambar sampah dalam bentuk
g.setColor (Color.blue);
g.fillRect(200, 120, x,
g.drawRect (200, 120, x,

y)i
y)i

}

destroy () methods
terbuka
statusMulutRobot);

kotak berwarna biru

public void actionPerformed (ActionEvent e) {

if (e.getSource() == b) {

System.out.println ("Button 1
doSedot () ;

}

else

System.out.println ("Button 2

}

public void doSedot ()
{

was pressed");

was pressed") ;

if(x == 0 && y==0)
{
statusMulutRobot = 300; // robot buka mulut
x = 30;
y = 30;
} else {
x = 0; //posisi sampah sudah bersih
y = 0; //posisi sampah sudah bersih
statusMulutRobot = 360; // probot tutup mulut
}
repaint () ;

Program 1.1. Implementasi GUI Robot Vacuum Clleaner dan Method doSedot()

Jika program 1 diimplementasikan menggunakan text editor Netbeans 7.1 maka program

tersebut dapat di-compile dan dijalankan dengan memilih menu Run, lalu pilih submenu Run File.

Output dari program 1 adalah seperti tampilan pada Gambar 1.3.

[NBNd) Applet Viewer: javaapplication3 /RobotM...

" il
L
Applet started.

Run

L W

Gambar 1.3. Applet Robot VVacuum Cleaner

1.4.2. Membuat method doKeK:iri() dan doKeKanan()
/*

* Mengimplementasikan Robot Vacuum Cleaner dengan method doKeKiri ()
* dan doKeKanan () menggunakan metode Simple Based Agent.
*/

package Jjavaapplication3;

import Jjava.applet.Applet;

import Jjava.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

/**

*

* @author Irvanizam Zamanhuri
*/

public class RobotBerjalan extends Applet implements ActionListener(

private Image robot image;

Button b;

int x = 30, y = 30; //posisi sampah

int z = 300; //posisi robot sedang membuka mulut
int xPosRobot = 20; //posisi awal robot

int yPosRobot = 30; //posisi awal robot

int xPosSampah = 20; //posisi awal sampah

int yPosSampah = 130; //posisi awal sampah

/**
* Initialization method that will be called after
* the applet is loaded into the browser.

*/
public void init () {
// TODO start asynchronous download of heavy resources

b = new Button ("Run");

setLayout (new BorderLayout());

add ("South",b) ;

b.addActionListener (this) ;
}
//TODO overwrite start(), stop() and destroy() methods
public void paint(Graphics g)
{
super.paint(g);
g.drawString ("Lokasi A", 0, 20);
g.drawString ("Lokasi B", 270, 20);
//menggambar robot
g.fillArc(xPosRobot, yPosRobot, 100, 100, 0, z);

//menggambar sampah dalam bentuk kotak berwarna biru
g.setColor (Color.blue);

g.fillRect (xPosSampah, yPosSampah, x, Vy);
g.drawRect (xPosSampah, yPosSampah, x, v);

}

public void actionPerformed (ActionEvent e) {

if (e.getSource() == Db) {
System.out.println ("Button 1 was pressed");
if (xPosRobot == 20) {
doKeKanan () ;
} else {

doKeKiri () ;

}
else
System.out.println ("Button 2 was pressed");

}

public void doKeKanan ()

{
z = 300;
xPosRobot = 220; // posisi robot pindah
repaint () ;

}

public void doKeKiri ()

{
z = 300;
xPosRobot = 20;
repaint () ;

Program 1.2. Implementasi Method doKeKiri() dan doKeKanan()

Program 1.2 dapat di-compile dan dijalankan melalui pilihan menu Run, lalu pilih submenu

Run File. Kemudian output dari program 2 ditampilkan seperti Gambar 1.4.

. M ™ O Applet Viewer: javaapplication3/RobotB...

Lokasi A Lokasi B |

i e
| Run

Applet started. e

Gambar 1.4. Applet Robot VVacuum Cleaner

Latihan:
Robot Vacuum Cleaner merupakan robot yang membersihkan sampah pada Lokasi A dan B. Jika

posisi Robot pada suatu lokasi dimana ada sampah pada lokasi itu, maka Robot akan membersihkan
lokasi dengan memakan sampah yang ada. Sebaliknya, robot dengan senang hati akan berpindah ke
lokasi yang lain. Potongan Program 2 belum secara sempurna diimplementasikan. Silakan lengkapi
potongan program tersebut sehingga Robot mampu mendeteksi sampah dan kemudian membersihkan

sampah pada kedua lokasi A dan B.

MODUL 2
ROBOT PACMAN

2.1. Tujuan Praktikum
Mahasiswa mampu mengimplementasikan Agent Robot Pacman sederhana dengan
menggunakan bahasa pemrograman Java Applet. Implementasi agent ini menggunakan metode

Simple Reflex Agents.

2.2. Dasar Teori

2.2.1. Jenis-Jenis Agent Program
Dalam Kecerdasan Buatan, tingkat kesulitan untuk menyelesaikan permasalahan (problem
solving) tergantung dari model agent program yang diimplementasikan. Menurut Russel dan Norvig,

terdapat 5 jenis model agent program.

1. Simple Reflex Agents :
Merupakan agent yang bekerja berdasarkan reflex. Contohnya, sebuah driver agent(supir taxi

otomatis), harus memberikan reflex mengerem ketika terdapat mobil yang berhenti didepanya.

2. Model Based Reflex Agents

Merupakan agent yang bekerja berdasarkan model reflex.

3. Goal Based Agents
Merupakan sebuah agent yang mendasarkan setiap tindakannya untuk mencapai tujuan yang telah
ditentukan. Setiap agent akan mempertimbangkan setiap kemungkinan yang akan terjadi pada mesa
depan berdasarkan tindakan yang akan/telah dilakukanya.

4. Utility Based Agents
Merupakan sebuah fungsi yang memetakan suatu keadaan kedalam bilangan real, yang
menggambarkan derajak kesenangan/kepuasan. Sedikit berbeda dengan Goal Based Agent, tipe ini
tidak mengutamakan semua tujua, tetapi akan mengutamakan tujuan mana yang mungkin tercapai

berdasarkan kondisi tertentu(tujuan kepuasan, kenyamanan, keefisienan).

5. Learning Agents
Merupakan agent yang tetap melakukan pengecekan terhadap keadaan lingkungan, sehingga dapat

memberikan respon yang tepat.

2.3. Mengimplementasikan Agent Pacman dengan Java Applet.
Applet ini terdiri dari tiga buah class, RobotPacMan, RobotAksi, dan MyPoint. Class

RobotPacMan digunakan untuk merancang posisi dari panel, button “Start” dan “Stop”.

/*
* Class RobotPacMan digunakan untuk mendesain letak Panel,
* Button "Start" dan "Stop". Pada class ini,

* Robot Pacman mencari sampah secara horizontal
* dan membersihkan sampah tersebut.

*/

import java.applet.Applet;

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

*

* @author Irvanizam Zamanhuri
*/

public class RobotPacMan extends Applet implements ActionListener {

Button start;

Button stop;

Panel papanTombol;
RobotAksi papanAksi;

/**
* Initialization method that will be called after
* the applet is loaded into the browser.
*/
public void init () {
start = new Button ("Start"):;
start.addActionListener (this) ;

stop = new Button("Stop"):;
stop.addActionListener (this);

papanTombol = new Panel();
papanTombol.setLayout (new GridLayout());
papanTombol.add (start) ;
papanTombol.add (stop) ;

papanAksi = new RobotAksi();
papanlAksi.setBackground(Color.black) ;

setLayout (new BorderLayout());

add ("South", papanTombol) ;
add ("Center", papanAksi);

@Override

public void actionPerformed (ActionEvent ae) {

if (ae.getSource ()==start)
{

papanlAksi.jalan();
}
if (ae.getSource ()==stop)
{

papanAksi.berhenti () ;

}
Class RobotAksi memperlihatkan robot Pacman berjalan secara horizontal dan kembali membalik ke

arah semua. Pada class ini letak semua sampah didefinisikan melalui class MyPoint yang bertipe data

array.

class RobotAksi extends RobotPacMan implements Runnable
{

Thread runner = null;

Boolean keepRunning;

MyPoint[] p = new MyPoint[4];

int x =
int y =
int g = 5;
int incr = 5;

O ~e

’

o= O

int arahMulut = 0;
boolean black=true;

@Override
public void run () {
Dimension d = getSize();
System.out.println (x);
while (keepRunning)
{
if((x + g) > d.width)
{
incr = -incr; // ubah posisi
arahMulut = 240; //arah mulut ke kanan

if (x < 0)

incr = -incr;
arahMulut = 0; // arah mulut ke kiri
}
X += incr;
repaint () ;
try {
runner.sleep (90);
} catch (InterruptedException ex) {

Logger.getLogger (RobotAksi.class.getName()) .log(Level.SEVERE, null, ex);

}

}
}

throw new UnsupportedOperationException ("Not supported yet.");

public void jalan()

{

}

if (runner == null) {
runner = new Thread(this);
keepRunning = true;
runner.start () ;

public void berhenti ()

{

if (runner != null) {
keepRunning = false;
runner = null;

public void paint (Graphics qg)

{

int i;
if (black) {
g.setColor (Color.white);
// robot tutup mulut
g.fillArc(x,vy,20,20,arahMulut, 360) ;
}
else {
g.setColor (Color.white);
//menggambar robot
g.fillArc(x,vy,20,20,arahMulut, 300) ;

g.setColor (Color.blue);

pl[0] = new MyPoint (120,20);
pll] = new MyPoint (100,220);
pl2] = new MyPoint (225,60);
pl[3] = new MyPoint (125,70);

for (1 = 0; i < p.length; i++)
g.fillRect (p[i].getX(),pli].get¥Y(),20,20);
black = !black;

Class MyPoint merupakan class untuk mendeklarasikan koordinat sampah-sampah. Dengan

menggunakan konstraktor MyPoint(x,y), letak koordinat dari sampah dapat terekam dan dengan

mudah dipanggil kembali dengan menggunakan method getX() dan getY/().

class MyPoint {

private int x;
private int y;

MyPoint (int x, int y)
{
this.x = x;
this.y = y;
}

public int getX()
{

return this.x;

}

public int getY ()
{
return this.y;

}

}

Gabungkan ketiga class di atas dan simpan ke dalam satu file RobotPacMan.java. Jalankan file java
itu menggunakan perangkat lunak Netbeans 7.1. Class Applet RobotPacMan dapat dilihat seperti
Gambar 2.1. Class RobotPacMan juga dapat dijalankan melalui web browser dengan menempelkan
class tersebut pada file HTML.

[NN Applet Viewer: RobotPacMan.class L

Start | Stop

Applet started.

Gambar 2.1. Visualisasi Robot PacMan

Setelah menjalankan class RobotPacMan melalui perangkat lunak Netbeans (compiler java),

masukkan class nya ke dalam sebuah file HTML dengan nama misalnya RobotPacMan.Java.

Penempelan class ini dapat dilihat pada Gambar 2.2. Jalankan script ini melalui salah satu web

browser. Pastikan bahwa web browsernya telah diinstall plug-in Java Applet.

<HTML>
<HEAD>
<TITLE>Applet HTML Page</TITLE>
</HEAD>
<BODY>
<H3><HR WIDTH="100%">Applet HTML Page<HR WIDTH="100%"></H3>
<P>

<APPLET codebase="classes" code="RobotPacMan.class" width=350
height=2 00></APPLET>
</P>

<HR WIDTH="100%"><I>Generated by NetBeans IDE</I>
</BODY>
</HTML>

Gambar 2.2. Program Script RobotPacMan HTML

Tugas:
Lengkapi program di atas sehingga Robot PacMan dapat berjalan baik secara horizontal maupun
vertikal. Ketika robot menjumpai sampah, maka robot akan membersihkan sampah-sampah tersebut

dengan memakannya.

MODUL 3
MASALAH DAN RUANG KEADAAN

3.1. Tujuan
Mahasiswa diharapkan mampu merepresentasikan suatu masalah ke dalam bentuk solusi.
Meningkatkan pemahaman mahasiswa terhadap topologi tree sebagai salah satu solusi dalam

memecahkan permasalahan Kecerdasan Buatan.

3.2. Dasar Teori
+ Pada sistem yang menggunakan kecerdasan buatan, akan mencoba untuk memberikan output

berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada (Gambar 3.1).

Sistem yang
menggunakan Al
MASALAH — SOLUSI
asis Inference >
Pengetahua Engine —>

Gambar 3.1. Sistem yang Menggunakan Kecerdasan Buatan

« Pada sistem harus dilengkapi dengan sekumpulan pengetahuan yang ada pada basis
pengetahuan. Sistem harus memiliki inference engine agar mampu mengambil kesimpulan
berdasarkan fakta atau pengetahuan. Output yang diberikan berupa solusi masalah sebagai hasil
dari inferensi.

+ Secara umum, untuk membangun suatu sistem yang mampu menyelesaikan masalah, perlu
dipertimbangkan 4 hal:

1. Mendefinisikan masalah dengan tepat. Pendefinisian ini mencakup spesifikasi yang tepat
mengenai keadaan awal dan solusi yang diharapkan.

2. Menganalisis masalah tersebut serta mencari beberapa teknik penyelesaian masalah yang
sesuai.
Merepresentasikan pengetahuan yang perlu untuk menyelesaikan masalah tersebut.

4. Memilih teknik penyelesaian masalah yang terbaik.

3.3 Mendefinisikan Masalah Sebagai Suatu Ruang Keadaan

4+ Ruang Keadaan (State Space), yaitu suatu ruang yang berisi semua keadaan yang
mungkin. Kita dapat memulai bermain catur dengan menempatkan diri pada keadaan awal,
kemudian bergerak dari satu keadaan ke keadaan yang lain sesuai dengan aturan yang ada,
dan mengakhiri permainan jika salah satu telah mencapai tujuan.
4+ Pada Permainan Catur, harus ditentukan :
1. Posisi awal pada papan catur;
Semua bidak diletakkan di atas papan catur dalam 2 sisi, yaitu kubu putih dan kubu
hitam (Gambar 3.2).

Gambar 3.2. Keadaan Awal Permainan Catur

2. Aturan-aturan untuk melakukan gerakan secara legal:
Aturan-aturan ini sangat berguna untuk menentukan gerakan suatu bidak, yaitu

melangkah dari satu keadaan ke keadaan lain. Misalkan suatu aturan untuk

menggerakkan bidak dari posisi (e,2) ke (e,4), dapat ditunjukkan dengan aturan:
IF Bidak putih pada Kotak(e,2),
And Kotak(e,3) Kosong,
And Kotak(e,4) Kosong
Then Gerakkan bidak dari (e,2) ke (e,4)
Seperti terlihat pada Gambar 3.3.

Gambar 3.3. Gerakan bidak catur

3. Tujuan (Goal)
Tujuan yang ingin dicapai adalah posisi pada papan catur yang menunjukkan
kemenangan seseorang terhadap lawannya. yaitu posisi Raja yang sudah tidak dapat
bergerak lagi. Gambar 3.4 merupakan salah satu contoh tujuan telah tercapai, yaitu Raja

pada bidak hitam sudah tidak dapat bergerak lagi.

Gambar 3.4. Salah Satu Raja Mati

4+ Sehingga secara umum, untuk mendeskripsikan masalah dengan baik, harus:
1. Mendefinisikan suatu ruang keadaan;
2. Menetapkan satu atau lebih keadaan awal;
3. Menetapkan satu atau lebih tujuan;
4

Menetapkan kumpulan aturan.

3.4 Representasi Ruang Keadaan
4+ Ada beberapa cara untuk merepresentasikan Ruang Keadaan, antara lain:
1. Graph Keadaan

» Graph terdiri-dari node-node yang menunjukkan keadaan yaitu keadaan awal dan
keadaan baru yang akan dicapai dengan menggunakan operator.

» Node-node dalam graph keadaan saling dihubungkan dengan menggunakan arc
(busur) yang diberi panah untuk menunjukkan arah dari suatu keadaan ke keadaan
berikutnya.

» Pada Gambar 2.5 menunjukkan graph berarah dengan node M menunjukkan
keadaan awal, dan node T adalah tujuan. Pada Gambar 2.5 tersebut, kita dapat
melihat ada lintasan 4 dari M ke T, yaitu:

v" M-A-B-C-E-T
v" M-A-B-C-E-H-T
v" M-D-C-E-T

v" M-D-C-E-H-T

>

Pada graph ini, ada juga lintasan yang tidak sampai ke tujuan atau menemui jalan
buntu, yaitu:

M-A-B-C-E-F-G

M-A-B-C-E-I-J

M-D-C-E-F-G

M-D-C-E-I-J

M-D-I-J

Gambar 3.5, tanpa mempertimbangkan arah, akan didapat siklus: D-C-E-I-D, node-

AN N N SR

node ini akan selalu berulang.

Gambar 3.5. Graph Keadaan

2. Pohon Pelacakan

>

Untuk menghindari kemungkinan adanya proses pelacakan suatu node secara
berulang, maka digunakan struktur pohon.

Struktur pohon digunakan untuk menggambarkan keadaan secara hirarkis.

Pohon juga terdiri-dari beberapa node. Node yang terletak pada level-0 disebut
dengan nama “akar”. Node akar menunjukkan keadaan awal yang biasanya
merupakan topik atau obyek. Node akar ini terletak pada level ke nol.

Node akar memiliki beberapa percabangan yang terdiri-atas beberapa node
successor yang sering disebut dengan nama “anak” dan merupakan node-node
perantara. Namun jika dilakukan pencarian mundur, maka dapat dikatakan bahwa
node tersebut memiliki predecessor.

Node-node yang tidak memiliki anak sering disebut dengan nama node “daun”
yang menunjukkan akhir dari suatu pencarian, dapat berupa tujuan yang diharapkan
(goal) atau jalan buntu (dead end). Gambar 3.6 menunjukkan pohon pencarian

untuk graph pada gambar 3.5 dengan 6 level.

» Pada Gambar 3.6 di bawah ini, sudah tidak terlihat lagi adanya siklus, karena setiap

node tidak diperbolenkan memiliki cabang kembali ke node dengan level yang
lebih rendah

Gambar 3.6. Struktur Pohon

3. Pohon AND/OR

» Pada Gambar 3.7a terlihat ada suatu masalah M yang hendak dicari solusinya
dengan 3 kemungkinan yaitu A, B atau C. Artinya, masalah M bisa diselesaikan
jika salah satu dari subgoal A, B, atau C tidak terpecahkan.

» Lain halnya dengan gambar 3.7b, masalah M hanya dapat diselesaikan dengan A
AND B AND C. Dengan kata lain, untuk memecahkan masalah M, maka harus
dipecahkan subgoal A, B dan C terlebih dahulu. Pohon semacam ini disebut dengan
Pohon AND/OR.

arc yang
terletak
antara busur

berarti AND

(a) (b)

Gambar 3.7. Node AND/OR

» Gambar 3.8 memperlihatkan pencapaian tujuan pada graph Gambar 2.5 dengan

menggunakan Pohon AND/OR. Dengan mengunakan pohon AND/OR, tujuan yang

dicapai pada pohon (Gambar 3.6) sampai pada level-6 bisa dipersingkat hanya

sampai pada level-2 saja.

Level-0

Gambar 3.8. Pohon AND/OR

3.5. Contoh Kasus

+ Seorang petani akan menyeberangkan seekor kambing, seekor serigala, dan sayur-sayuran
dengan sebuah boat yang melalui sungai. Boat hanya bisa memuat petani dan satu
penumpang yang lain (kambing, serigala atau sayur-sayuran). Jika ditinggalkan oleh petani
tersebut, maka sayur-sayuran akan dimakan oleh kambing, dan kambing akan dimakan oleh
serigala.

+ Penyelesaian :

1. Identifikasi ruang keadaan
Permasalahan ini dapat dilambangkan dengan (JumlahKambing, JumlahSerigala,
JumlahSayuran, JumlahBoat). Sebagai contoh: Daerah asal (0,1,1,1) berarti pada daerah
asal tidak ada kambing, ada serigala, ada sayuran, dan ada boat.
2. Keadaan awal & tujuan
Keadaan awal, pada kedua daerah:
a. Daerahasal: (1,1,1,1)
b. Daerah seberang: (0,0,0,0)
Tujuan, pada kedua daerah:
a. Daerah asal: (0,0,0,0)
b. Daerah seberang: (1,1,1,1)
3. Aturan-aturan
Aturan-aturan dapat digambarkan seperti pada Tabel 3.1.

Tabel 3.1. Aturan-aturan masalah teko air

At‘g—an Aturan
Kambing menyeberang
Sayuran menyeberang
Serigala menyeberang
Kambing kembali
Sayuran kembali

Serigala kembali

N o g & w N e

Boat kembali

4. Solusi
Salah satu solusi yang bisa ditemukan dapat dilihat pada Tabel 3.2.

Tabel 3.2. Contoh solusi masalah petani, kambing, sayuran, dan serigala

Daerah Aturan yan
Rl Seberang dipak);i ’
(1,11, (0,0,0,0) 1
(0,1,1,0) (1,0,0,2) 7
0,1,1,2) (1,0,0,0) 3
(0,0,1,0) (1,1,0,1) 4
(1,0,1,2) (0,1,0,0) 2
(1,0,0,0) 0,1,1,1) 7
(1,0,0,1) (0,1,1,0) 1
(0,0,0,0) (1,1,1,1) solusi

Tugas

Pelajari dan analisa kasus petani, kambing, sayuran, dan serigala. Buatkan mekanisme pembuatan
struktur agent.

MODUL 4
TEKNIK PENCARIAN BLIND SEARCH

4.1. Tujuan Praktikum

Mahasiswa mampu memahami konsep blind search dan dapat mengimplementasikan program

salah satu algoritma blind search pada kasus tree. Program ini dibuat dengan menggunakan bahasa

pemrograman Java.

4.2. Dasar Teori
4.2.1. Teknik Pencarian Blind Search

Ada beberapa algoritma yang dikategorikan ke dalam teknik pencarian blind search.
Breadth First Search (BFS)

Uniform Cost Search (UCS)

Depth First Search (DFS)

Depth Limited Search (DLS)

Iterative Deepening Search (IDS)

Bidirectional Search (BS)

Pada pertemuan praktikum ini, akan diperlihatkan salah satu algoritma blind search untuk mencari

goal dari initial state yang diberikan. Terdapat 4 komponen yang harus didefinisikan ketika mencari

solusi dari sebuah permasalahan.

1.

2
3.
4

Initial state
Goal State
Menentukan/menemukan urutan untuk mencapai Goal State

Biaya (cost) menemukan solusi.

Kesemua algoritma di atas mempunyai strategi dengan mencari goal yang dimulai dari initial

state. Terminologi tree dipilih sebagai salah satu teknik pencarian untuk mencapai goal. Untuk lebih

jelas, Gambar 4.1 memperlihatkan contoh kasus penyelesaian permainan 8-puzzle dengan

mentransformasikan solusi permainan ke dalam topologi tree.

Parent.action =left

K choe/
HEG

/ St?/DEpth =1
1 3 1123 1123 112]3

Sl2]4 5[4 S(s|4 s[4

718 7 7|8
2 K HIE HE HIE 1{2 |2
B 3 4|8 s |4 2|4 4 HEE
7188 7|8 7|8 3 g5

1
B

Gambar 4.1. Topologi Tree untuk permainan 8-puzzle*

Kumpulan node-node yang dibentuk tetapi belum disambungkan dengan node yang lain

dinamakan dengan fringe. Setiap element dari fringe merupakan node left dari tree. Berikut akan

dijelaskan algoritma-algoritma yang dikategorikan ke dalam kelas blind search.

Breadth First Search (BFS): adalah algoritma yang menjelajah node root pertama sekali,
kemudian menjelajah semua successor dari node root, kemudian menjelajah semua successor
dari successor, dan seterusnya sampai successor yang terakhir. Fringe merupakan struktur
data queue First In First Out (FIFO).

Uniform Cost Search (UCS): merupakan modifikasi dari BFS dengan selalu menjelajah
node yang paling sedikit cost-nya pada fringe menggunakan path cost function g(n) (misalnya
biaya (banyaknya langkah) dari initial state ke node n). Node disusun dengan algoritma queue

untuk menentukan jumlah (biaya) untuk mencapai node n.

Depth First Search (DFS): selalu menjelajah node yang paling dalam pada tree. Fringe
merupakan struktur data queue (stack) Last In First Out (LIFO).

Depth Limited Search (DLS): Kegagalan algoritma DFS dalam menyediakan space
(memory) dapat diatasi dengan menentukan terlebih dahulu depth limit I, yaitu node pada

depth | diperlakukan seolah-olah mereka tidak memiliki successors.

Iterative Deepening Depth First Search (IDS): secara umum strategi algoritma ini biasanya
digunakan dengan mengkombinasikan algoritma depth first tree search yang mencari the best
depth limit. Ini dilakukan dengan menambahkan limit dari 0, kemudian 1, kemudian 2, and

dan seterusnya sampai goal-nya ditemukan.

! (Sumber: http://www.codeproject.com/Articles/203828/Al-Simple-Implementation-of-Uninformed-Search-Stra)

o Bidirectional Search (BS): Ide dari algoritma ini adalah untuk mencari secara bersamaan

baik dari goal ke initial state dan dari the initial state ke goal, dan berhenti ketika kedua

langkah pencarian bertemu di pertengahan pencarian. Disini, terdapat dua fringe, fringe

pertama digunakan untuk langkah dari initial state ke goal (forward) dan fringe satu lagi

untuk langkah dari goal ke initial state (backward). Setiap fringe diimplementasikan dengan

algoritma LIFO atau FIFO tergantung dari strategi pencarian yang digunakan (misalnya
Forward=BFS, Backward=DFS).

4.2.2. Metode Pencarian Dan Pelacakan

Pada dasarnya ada 2 teknik pencarian dan pelacakan yang digunakan, yaitu pencarian

buta (blind search) dan pencarian terbimbing (heuristic search).

4.2.2.1. Pencarian Buta (Blind Search)
1. Pencarian Melebar Pertama (Breadth-First Search)

+

Pada metode Breadth-First Search, semua node pada level n akan dikunjungi
terlebih dahulu sebelum mengunjungi node-node pada level n+1.

Pencarian dimulai dari node akar terus ke level ke-1 dari kiri ke kanan,
kemudian berpindah ke level berikutnya demikian pula dari kiri ke kanan

hingga ditemukannya solusi (Gambar 4.2).

Gambar 4.2. Metode Breadth First Search

Keuntungan

a. Tidak akan menemui jalan buntu.

b. Jika ada satu solusi, maka breadth-first search akan menemukannya. Dan
jika ada lebih dari satu solusi, maka solusi minimum akan ditemukan.

Kelemahan

a. Membutuhkan memori yang cukup banyak, karena menyimpan semua
node dalam satu pohon.

b. Membutuhkan waktu yang cukup lama, karena akan menguji n level

untuk mendapatkan solusi pada level yang ke-(n+1).

2. Pencarian Mendalam Pertama (Depth-First Search)
+ Pada Depth-First Search, proses pencarian akan dilakukan pada semua
anaknya sebelum dilakukan pencarian ke node-node yang selevel.
+ Pencarian dimulai dari node akar ke level yang lebih tinggi. Proses ini

diulangi terus hingga ditemukannya solusi (Gambar 4.2).

Gambar 4.3. Depth First Search

+ Keuntungan
a. Membutuhkan memori yang relatif kecil, karena hanya node-node pada
lintasan yang aktif saja yang disimpan.
b. Secara kebetulan, metode depth-first search akan menemukan solusi tanpa
harus menguji labih banyak lagi dalam ruang keadaan.
+ Kelemahan
a. Memungkinkan tidak ditemukannya tujuan yang diharapkan.

b. Hanya akan mendapatkan 1 solusi pada setiap pencarian.

4.3. Mengimplementasikan Algoritma Bfs.

Ketiklah source code Program 3.1 pada perangkat lunak Netbeans 7.0 pada bagian teks editor
Java Main Class. Pilih Menu “File”, lalu pilih submenu “New File”. Kemudian pilih Categories
“Java” dengan FileTypes-nya adalah “Java Main Class”. Setelah itu, tekan tombol ‘“Next” dan
masukkan nama file AdjacencyList, dan terakhir tekan tombol “Finish”. Alur langkah untuk membuat

algoritma BFS dapat diikuti melalui Gambar 4.3

] oo e
Open Recent Project »

v & JavaApplicati

G Sourcepac Close Project (JavaApplication3) [[weor]| @ B-8- @ @ FIB G & &% @9 ¢ 5 @
v [<defay Open File... =
£ Adjy Open Recent File » S.00 New File
S prig
& Rob Project Group > Steps Choose File Type
<] Rod Project Properties (JavaApplication3) 1. Choose File Type . s —
v [javaap) 3 © Project: | & JavaApplication3 =)
i Import Project >
i’ ::: i ! Categories: File Types
B Al Save 325 [~] 3 | Java Class
& Rob Save As, (0 JavaFx. (£ Java Interface
& Rob Save All o%s (3 Swing GUI Forms = j“‘ :“”’“ .
& ave A = |8 Java Annotation Type
» [Uibraries K5 JavaBeans Objects & Java Exception
» @ Regpps-oniine Page Setup... — AWT GUI Forms & Java Package Info
Print... ~0HP - JF“"“ " & JApplet
—_— N 3 Persistence 15 Applet
‘Adjacencylistjava - N Print to HTML... 63 Groowy |5 Java Main Class 4
Members View | ol (i Hibernate | | & Java singieton crass A
130 (50 web services [Empty Java File L
¥ & Adjacencylist Fl'i 131 ~ Y| |60 1ava parkans 2
& AdjacencyList) i X ;
133
o :’:s‘::"g“”)"” ALl 5 Creates a new plain Java class. This template is useful for creating new v
= =D Seare] non-visual classes. =
@ main(siringl) args) e el o =
] nodes : Map<Node, List<Node>> W) (o e
¥ & Node [

& Nodefint data)

O toString0 : Siring % 5 6
B colour : NodeColour

B dana: im Help < Back Next > Finish Cancel)
B distance : int j A

] predecessor : Mode
@ 10I& &8 &

Gambar 4.4. Teks Editor Netbeans 7.0

Kode berikut merupakan urutan angka dari 0, 1, 2, .N. Initial state-nya adalah 0 dan goal
state-nya adalah angka yang ditetapkan oleh user. Setiap langkah dibangkitkan secara acak atau 1.
Method addEdge (Node nl, Node n2) adalah method untuk menghubungkan dua buah edge

sedangkan method bfs (Node s) adalah method untuk menentukan teknik pencarian menggunakan
algoritma Breadth First Search..

import Jjava.util.ArrayDeque;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import java.util.Queue;
import java.util.Set;

/**

* Graph represented by an adjacency list.

*

* Reference: Introduction to Algorithms - CLRS.
*

* Qauthor

* @since: 26/02/2011

*

~

public class AdjacencylList

{
public enum NodeColour { WHITE, GRAY, BLACK }

public static class Node
{
int data;
int distance;
Node predecessor;
NodeColour colour;

public Node (int data)

{
this.data = data;

}

public String toString()
{

return " (" + data + ",d=" + distance + ")";

}
}

Map<Node, List<Node>> nodes;

public AdjacencyList ()

{
nodes = new HashMap<Node, List<Node>>();

}

public void addEdge (Node nl, Node n2)
{

if (nodes.containsKey(nl)) {
nodes.get (nl) .add (n2) ;
} else {

ArrayList<Node> list = new ArrayList<Node>();
list.add (n2);
nodes.put (nl, list);

}

public void bfs (Node s)
{
Set<Node> keys = nodes.keySet ()
for (Node u : keys) {
if (u !'= s) {
u.colour = NodeColour.WHITE;
u.distance = Integer.MAX VALUE;
u.predecessor = null;

}

}

s.colour = NodeColour.GRAY;

s.distance = 0;

s.predecessor = null;

new ArrayDeque<Node> () ;

Queue<Node> g
g.add(s) ;
while (!g.isEmpty()) {
Node u = g.remove ()
List<Node> adj u =
if (adj_u != null)
for (Node v : adj u) {
if (v.colour == NodeColour.WHITE)
v.colour = NodeColour.GRAY;
v.distance = u.distance + 1;
v.predecessor = u;
g.add (v) ;

nodes.get (u) ;
{

}

}
u.colour = NodeColour.BLACK;

System.out.print(u + " ");
}
}

public static void main(String[] args)

AdjacencylList

Node
Node
Node
Node
Node
Node
Node
Node

graph

graph.
graph.

graph.
graph.

graph.
graph.
graph.

graph.
graph.
graph.

graph.
graph.
graph.
graph.

graph.
graph.
graph.

graph.
graph.

graph.

graph = new AdjacencylList();
nl = new Node (1) ;
n2 = new Node (2);
n3 = new Node (3);
n4 = new Node (4);
n5 = new Node (5);
n6 = new Node (6) ;
n7 = new Node (7);
n8 = new Node (8);
.addEdge (nl, n2);
addEdge (n2, nl);
addEdge (n2, n3);
addEdge (n3, n4);
addEdge (n3, n2);
addEdge (n4, n3);
addEdge (n4, nb5);
addEdge (n4, n6);
addEdge (n5, n4);
addEdge (n5, n6);
addEdge (n5, n7);
addEdge (n6, n4);
addEdge (n6, nb5);
addEdge (n6, n7);
addEdge (n6, n8);
addEdge (n7, nb);
addEdge (n7, no6);
addEdge (n7, n8);
addEdge (n8, né6);
addEdge (n8, n7);
bfs(n3);

Gambar 4.5. Tree 1

Gambar 4.6. Tree 2

OO
©

Gambar 4.7. Tree 3

Tugas:
1. Tentukan bagaimana algoritma BFS di atas dapat menentukan node ke 8, 6, dan 7.
2. Ubahlah method static void main sehingga bentuk tree seperti Gambar 4.4 dapat dibentuk.
Kemudian tentukan bagaimana algoritma BFS dapat menemukan node 5.
3. Ubahlah method static void main sehingga bentuk tree seperti Gambar 4.5 dapat dibentuk.
Kemudian tentukan bagaimana algoritma BFS dapat menemukan node 9.

Ubahlah kode program di atas sehingga bentuk tree seperti Gambar 6 dapat dibentuk. Kemudian
tentukan bagaimana algoritma BFS dapat menemukan node C.

MODUL 5
TEKNIK HEURISTIC SEARCH

5.1. Tujuan
Memperlihatkan kepada mahasiswa bagaimana menyelesaikan permasalahan pada game 8-puzzle
dengan menggunakan algoritma heuristic search. = Mahasiswa diharapkan mampu

mengimplementasikan algoritma heuristic dengan menggunakan Java.

5.2. Dasar Teori
5.2.1. Teknik Pencarian Heuristic Search

Teknik blind search tidak selalu memecahkan masalah dengan baik. Waktu yang dibutuhkan
ketika menemukan solusi atau memecahkan masalah terlalu lama dan juga memori yang dibutuhkan
untuk menampung urutan-urutan solusi sangat besar akan menjadi kelemahan bagi algoritma ini.
Kelemahan tersebut dapat diatasi ketika informasi-informasi tambahan yang diperoleh dari setiap
langkah pencarian diidentifikasikan dan dijadikan sebagai penentu langkah berikutnya.

Salah satu teknik untuk meminimalisasikan kelemahan dari blind search adalah teknik
heuristic. Heuristic merupakan suatu proses dimana pencarian solusi akan ditemukan dengan baik
namun bisa juga kemungkinan tidak ada solusi. Teknik ini mmebutuhkan sebuah nilai untuk
menentukan pencarian berikutnya. Nilai heuristic dapat ditentukan melalui fungsi heuristic.

Fungsi heuristic merupakan fungsi yang melakukan pemetaan dari diskripsi keadaan ke
pengukur kebutuhan. Umumnya fungsi ini direpresentasikan ke dalam bentuk angka. Dalam ilmu
Kecerdasan Buatan, heuristic dihadapkan dalam 2 keadaan dasar.

e Persoalan/problema yang mungkin memiliki solusi eksak, namun biaya perhitungan untuk
menemukan solusi tersebut sangat tinggi dalam kebanyakan persoalan (seperti catur), ruang
keadaan bertambah secara luar biasa seiring dengan jumlah.

o Persoalan yang mungkin tidak memiliki solusi eksak karena ambiquitas (ketidakpastian)
mendasar dalam pernyataan persoalan atau data yang tersedia diagnosa medis merupakan salah

satu contohnya.

Heuristi hanyalah sebuah cara menerka langkah berikutnya yang harus diambil dalam memecahkan

suatu persoalan berdasarkan informasi yang ada/tersedia.

Pencarian Heuristik (Heuristic Search)

+« Pencarian buta tidak selalu dapat diterapkan dengan baik, hal ini disebabkan waktu

aksesnya yang cukup lama serta besarnya memori yang diperlukan.

+ Kelemahan ini sebenarnya dapat diatasi jika ada informasi tambahan dari domain yang

bersangkutan.

+ Misalkan pada kasus 8-puzzle (Gambar 5.1)

Keadaan Awal

1123
718]4
6 5

Tujua
213

4

6l 5

Gambar 5.1. Kasus 8-puzzle

Tujuan

1

2

F)

atas
? 11213
& 7 a
5 h H] g

Gambar 5.2. Langkah awal kasus 8-puzzle

+ Langkah pertama dari permainan tersebut seperti terlihat pada Gambar 5.2. Apabila

digunakan pencarian buta, kita tidak perlu mengetahui operasi apa yang akan dikerjakan

(sembarang operasi bisa digunakan).

+ Pada pencarian heuristik perlu diberikan informasi khusus dalam domain tersebut.

+ Informasi yang bisa diberikan, antara lain:

a. Untuk jumlah ubin yang menempati posisi yang benar: jumlah yang lebih tinggi
adalah yang lebih diharapkan (lebih baik), Gambar 5.3.

T

Hjua

A

-

T

h=8

h=4

h=5

Gambar 5.3. Fungsi heuristik pertama kasus 8-puzzle

b. Untuk jumlah ubin yang menempati posisi yang salah: jumlah yang lebih kecil adalah
yang diharapkan (lebih baik), Gambar 5.4.

Tujuan
1 > 3 1 2 T
H] a T H] a
7 | L k L
kiri atas
/kananl

1)] 1) k4 1 > 3

T] a4 T] a T a

h 5 h L h H 5

h=2 h=4 h=3

Gambar 5.4. Fungsi heuristik kedua kasus 8-puzzle

c. Menghitung total gerakan yang diperlukan untuk mencapai tujuan; jumlah yang lebih
kecil adalah yang diharapkan (lebih baik), Gambar 5.5.

Tujuan
1)] 41 2]
H a4 T H a
T h 5 h 5
kiri atas
kananl \

41 2 k] 41 2 k] 1 2 T

¥ H i § T Hy a ¥ a

h L h 5 h Hi L

h=2 h=4 hi=4

Gambar 5.5. Fungsi heuristik ketiga kasus 8-puzzle

5.3. Implementasi Algoritma Heurstic pada Permainan 8-Puzzle

Ketiklah source code Program 5.1 dan 5.2. pada perangkat lunak Netbeans 7.0 pada bagian
teks editor Java Main Class. Pilih Menu “File”, lalu pilih submenu ‘“New File”. Kemudian pilih
Categories “Java” dengan FileTypes-nya adalah “Java Main Class”. Setelah itu, tekan tombol “Next”
dan masukkan nama file EightPuzzleSearch, dan terakhir tekan tombol “Finish”. Alur langkah untuk

membuat algoritma Heuristic dapat diikuti melalui Gambar 5.6

] oo e
Open Recent Project »

v & JavaApplicati

G Sourcepac Close Project (JavaApplication3) [[weor]| @ B-8- @ @ FIB G & &% @9 ¢ 5 @
v [<defay Open File... =
£ Adjy Open Recent File » S.00 New File
S prig
& Rob Project Group > Steps Choose File Type
<] Rod Project Properties (JavaApplication3) 1. Choose File Type . s —
v [javaap) 3 © Project: | & JavaApplication3 =)
i Import Project >
i’ ::: i ! Categories: File Types
B Al Save 325 [~] 3 | Java Class
& Rob Save As, (0 JavaFx. (£ Java Interface
& Rob Save All o%s (3 Swing GUI Forms = j“‘ :“”’“ .
& ave A = |8 Java Annotation Type
» [Uibraries K5 JavaBeans Objects & Java Exception
» @ Regpps-oniine Page Setup... — AWT GUI Forms & Java Package Info
Print... ~0HP - JF“"“ " & JApplet
—_— N 3 Persistence 15 Applet
‘Adjacencylistjava - N Print to HTML... 63 Groowy |5 Java Main Class 4
Members View | ol (i Hibernate | | & Java singieton crass A
130 (50 web services [Empty Java File L
¥ & Adjacencylist Fl'i 131 ~ Y| |60 1ava parkans 2
& AdjacencyList) i X ;
133
o :’:s‘::"g“”)"” ALl 5 Creates a new plain Java class. This template is useful for creating new v
= =D Seare] non-visual classes. =
@ main(siringl) args) e el o =
] nodes : Map<Node, List<Node>> W) (o e
¥ & Node [

& Nodefint data)

O toString0 : Siring % 5 6
B colour : NodeColour

B dana: im Help < Back Next > Finish Cancel)
B distance : int j A

] predecessor : Mode
@ 10I& &8 &

Gambar 5.6. Teks Editor Netbeans 7.0

File EightPuzzleSearch.java berisikan dua buah class yaitu class EightPuzzleSearch dan Node. Di
dalam class Node memasukkan semua node ke dalam sebuah tree. Class ini juga dapat menghasilkan
alur (path) dari root ke node tertentu yang diinginkan. Pemanggilan path ini dapat dilakukan melalui
pemanggilan method getPath(). Berikut ini adalah pendeklarasian class Node.

class Node {
int[] state = new int[9];
int cost;
Node parent null;
Vector<Node> successors = new Vector<Node> () ;

Node (int s[], Node parent) {
this.parent = parent;
for (int 1 = 0; 1 < 9; i++) state[i] = s[i];

public String toString() {
String s = "";
for (int 1 = 0; 1 < 9; 1i++) {
s = s + statef[i] + " "; }
return s;

}

public boolean equals (Object node) {
Node n = (Node)node;
boolean result = true;
for (int 1 = 0; 1 < 9; 1i++) {
if (n.state[i] != state[i]) result = false; }
return result;

Vector<Node> getPath (Vector<Node> v) {
v.insertElementAt (this, 0);
if (parent != null) v = parent.getPath(v);
return v;

}

Vector<Node> getPath () {
return getPath (new Vector<Node>()) ;

}

Program 5.1. Pendeklarasian Class Node.

Constructor Node menerima dua buah parameter yaitu urutan node children dan root dari
children tersebut. Semua children dan node-node yang ada di dalam tree didefinisikan ke dalam tipe
data integer (int). Class ini juga mempunyai method toString() yang berfungsi untuk mengubah node
(dalam tipe data int) ke dalam bentuk string sehingga hasilnya akan berbentuk alur (path) dari initial
state ke goal state dengan memanggil method getPath().

Class EightPuzzleSearch memanggil fungsi utama (main function), mendeskripsikan
algoritma heuristic, menghitung cost heuristic, mencetak alur (path) dari root ke suatu node, dan
menentukan node terbaik berdasarkan nilai dari fungsi heuristic.

public class EightPuzzleSearch {
EightPuzzleSpace space = new EightPuzzleSpace();

Vector<Node> open = new Vector<Node> () ;
Vector<Node> closed = new Vector<Node> () ;

int hlCost (Node node) {

int cost = 0;
for (int 1 = 0; 1 < node.state.length; i++) {
if (node.state[i] != i) cost++; }

return cost;

}
int h2Cost (Node node) {

int cost = 0;

int state[] = node.state;

for (int i = 0; i < state.length; i++) {
int vO = i, vl = statel[i];
/*tidak menghitung ubin yang kosong */
if (vl == 0) continue;

int row0 = v0 / 3, col0 = v0 % 3, rowl = vl / 3, coll = vl
int c=(Math.abs (rowl0-rowl)+Math.abs (colO-coll)) ;
cost += c;

o\
w
~.

}

return cost;

}

/*boleh diubah dengan memakai heuristic hl atau h2 */
int hCost (Node node) {
return h2Cost (node) ;

}

Node getBestNode (Vector nodes) {
int index = 0, minCost = Integer.MAX VALUE;
for (int i = 0; 1 < nodes.size(); 1i++) {
Node node = (Node)nodes.elementAt (i) ;
if (node.cost < minCost) {
minCost = node.cost;
index = 1i; } }
Node bestNode = (Node)nodes.remove (index) ;
return (bestNode) ;

int getPreviousCost (Node node) {

int i = open.indexOf (node);
int cost = Integer.MAX VALUE;
if (1 !'= -1) {
cost = open.get (i) .cost; }
else {
i = closed.indexOf (node) ;
if (1 !'= -1) cost = closed.get (i) .cost; }

return (cost) ;

}

void printPath (Vector path) {

for (int 1 = 0; 1 < path.size(); i++) {
System.out.print (" "™ + path.elementAt (i) + "\n");
}
void run() {
Node root = space.getRoot();

Node goal = space.getGoal();
Node solution = null;
open.add (root) ;
System.out.print ("\nRoot: " + root + "\n\n");
while (open.size() > 0) {
Node node = getBestNode (open) ;
int pathLength = node.getPath().size();
closed.add (node)

if (node.equals(goal)) {
solution = node;
break;

}
Vector<Node> successors =
space.getSuccessors (node) ;
for (int i = 0; 1 < successors.size(); i++) {
Node successor = successors.get(i);
int cost = hCost (successor)+pathLength+1;
int previousCost;
previousCost = getPreviousCost (successor);
boolean inClosed;
inClosed = closed.contains (successor) ;
boolean inOpen = open.contains (successor);

if (! (inClosed]| | inOpen) | |cost<previousCost)

{
if (inClosed) closed.remove (successor) ;
if (!inOpen) open.add(successor);
successor.cost = cost;
successor.parent = node;

}
}
// new TreePrint (getTree (root));
if (solution != null) {
Vector path = solution.getPath();
System.out.print ("\nSolution found\n");
printPath (path) ;

}

public static void main(String args([]) {
// melakukan pencarian

new EightPuzzleSearch().run();

Program 5.2. Pendeklarasian Class EightPuzzleSearch.

Program 5.2 membentuk sebuah object space dengan bertipe class EightPuzzleSpace.
Obijek ini berfungsi untuk mendefinisikan initial state dan goal state sehingga penggua (user) dengan
mudah menentukan contoh initial dan goal state pada 8-puzzle. Sebagai contoh pada kasus ini initial
dan goal state dapat dilihat seperti Gambar 5.7. Bentuk initial dan goal state direpresentasikan ke
dalam bentuk array berdimensi satu dan dideklarasikan seperti dibawah ini (lihat method getRoot()
dan getGoal()).

int ex([] = {3, 1, 2, 4, 7, 5, 6, 8, 0}; // initial state

int statel] = {0, 1, 2, 3, 4, 5, 6, 7, 8}; // goal state
Keadaan Awal Tujuan
3112 112
al7]|5]|—|3 4
6|8 6|17]8

Gambar 5.7. Initial dan Goal state pada 8-puzzle

Kode lengkap dari class ini dapat dilihat pada Program 5.3. Ketiklah source code Program 5.3. pada
perangkat lunak Netbeans 7.0 pada bagian teks editor Java Class. Pilih Menu “File”, lalu pilih
submenu “New File”. Kemudian pilih Categories “Java” dengan FileTypes-nya adalah “Java Class”.
Setelah itu, tekan tombol “Next” dan masukkan nama file EightPuzzleSpace, dan terakhir tekan
tombol “Finish”.

import Jjava.util.Vector;

/*

* Class EightPuzzleSpace dideklarasikan untuk menentukan
* initial dan goal state serta mendapatkan path dari root
* ke node tertentu

*/
/*

* Modified by Irvanizam Zamanhuri

*/
public class EightPuzzleSpace {

Node getRoot () {

int ex([] = {3, 1, 2, 4, 7, 5, 6, 8, 0};
// the Russell and Norvig eg
int rn(] = {7, 2, 4, 5, 0, 6, 8, 3, 1};

return new Node (ex, null);

}

Node getGoal () {
int statel] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
return new Node (state, null);

Vector<Node> getSuccessors (Node parent) {

}

Vector<Node> successors = new Vector<Node> () ;
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢ < 3; c++) {
/* ubin kosong disini */
if (parent.state[(r * 3) + c] == 0) {

/* memindahkan ubin ke kiri */
if (r > 0) {
successors.add (transformState(r-1, ¢, r, c, parent)); }
/* memindahkan ubin ke kanan */
if (r < 2) {
successors.add(transformState(r+1l, ¢, r, c, parent)); }
/* memindahkan ubin dari bawah */
if (¢ > 0) {
successors.add(transformState(r, c-1, r, c, parent)); }
/* memindahkan ubin dari atas */
if (c < 2) {
successors.add (transformState(r, c+l1, r, c, parent)); }

}
}
/* used in getTree */
parent.successors = SUCCESSOrs;
return successors;

Node transformState(int r0, int cO0, int rl, int cl, Node parent) {

s[81};

int[] s = parent.state;
int[] newState = {s[0], s[l], s[2], s3], sl[4], s[5], sl[6], s[7],
newState[(rl * 3) + cl] = s[(xr0 * 3) + c0];

newState[(r0 * 3) + cO0] 0;
return new Node (newState, parent);

Program 5.3. Pendeklarasian Class EightPuzzleSpace.

Pelajari class EightPuzzleSearch, EightPuzzleSpace, dan Node.

Ubahlah initial dan goal state dari program di atas sehingga bentuk initial dan goal statenya
Gambar 8. Kemudian tentukan langkah-langkah mana saja sehingga puzzlenya mencapai goal
state. Analisa dan bedakan dengan solusi pada point 1.

Ubahlah initial dan goal state dari program di atas sehingga bentuk initial dan goal statenya
Gambar 5.9. Kemudian tentukan langkah-langkah mana saja sehingga puzzlenya mencapai
goal state. Analisa dan bedakan dengan solusi pada point 1 dan 2.

Ubahlah initial dan goal state dari program di atas sehingga bentuk initial dan goal statenya
Gambar 5.10. Kemudian tentukan langkah-langkah mana saja sehingga puzzlenya mencapai
goal state. Analisa dan bedakan dengan solusi pada point 1, 2, dan 3.

Ubahlah initial dan goal state dari program dan class-class di atas sehingga bentuk initial dan
goal statenya Gambar 5.11. Kemudian tentukan langkah-langkah mana saja sehingga
puzzlenya mencapai goal state.

Keadaan Awal Tujuan

31112 123
4175 4 8
6|8 5(6]7

Gambar 5.8. Initial dan Goal state pada 8-puzzle 2

Keadaan Awal Tujuan
115]3 71615
4l6|8]|—]| 8 4
27 11213

Gambar 5.9. Initial dan Goal state pada 8-puzzle 3

Keadaan Awal Tujuan
1(2]3 11213
41516 —* 4 5
7|8 678

Gambar 5.10. Initial dan Goal state pada 8-puzzle 4

Keadaan Awal Tujuan
D|IBJ|E AlH| G
AlFIG|—*| B F
H| C C|D|E

Gambar 5.11. Initial dan Goal state pada 8-puzzle 5

MODUL 6
PERMAINAN TIC TAC TOE

6.1. Tujuan
Meningkatkan pemahaman mahasiswa terhadap code permainan tic tac toe. Selain itu, modul 6
memberikan pengetahuan tentang Object Oriented Programming menggunakan bahasa pemrograman

Java terutama Java Swing dan Japplet.

6.2. Dasar Teori
6.2.1. Permainan Tic Tac Toe

Penyelesaian masalah permainan tic tac toe dapat menggunakan algoritma heuristic untuk
mencapai solusi yang optimal. Pada modul ini memperlihatkan bagaimana membuat sebuah
permainan tic tac toe. Initial state dari permainan ini adalah puzzle ukuran 8 yang tidak berisikan apa-
apa. Ketika pemain pertama menekan salah satu ubin, maka ubin tersebut akan diberikan tanda
silang. Pemain kedua harus menghalangi pemain pertama untuk membuat tanda silang berjajaran baik
secara vertikal, horizontal, atau diagonal. Permainan ini akan berakhir (goal state) ketika salah
seorang pemain sudah menderetkan tanda meraka masing-masing baik secara vertikal, horizontal, atau
diagonal.

Solusi dari permasalahan ini dapat dilakukan dengan membuat topologi Tree, kemudian
setiap langkah dari pemain pertama atau kedua akan menjadikan initial state selanjutnya, kemudian
langkah tersebut akan dijadikan sebagai initial state yang baru sampai menemukan goal statenya.

llustrasi penyelesaian masalah permainan tic tac toe ini dapat dilihat melalui Gambar 6.1.

00//0/\\\\0\\
7TSA A AN AN

0 |X O} | X O

Gambar 6.1. Pohon Permainan Tic Tac Toe

6.3. Implementasi Permainan Tic Tac Toe
6.3.1. Menggunakan Graphical User Interface (GUI)

Permainan ini dibuatkan dengan menggunakan Java Swing yang terdiri dari 3 buah Java Class
dan 3 buah pendeklarasian enumaration. Ke-enam file tersebut dituliskan secara terpisah namun
disimpan pada folder yang sama (misalnya folder tic tac toe). Ke-enam file tersebut dituliskan nama
secara berurutan seperti berikut:

1. State.Java
2. Seed.Java
3. GameState.Java
4. CellJava
5. Board.Java
6

GameMain.Java

Pemberian sebuah nilai integer kepada variabel untuk membedakan status penggunaan (misalnya jika
tic tac toe sedang dimainkan, variable PLAYING diberikan nilai 0, variable DRAW = 1, dan
sebagainya) tidak begitu efektif di dalam penulisan code. Sekarang, JDK1.5 memperkenalkan fitur
baru yang dinamakan dengan enumaration, yang merupakan class spesial untuk menyimpan semua
variabel secara berurutan. Enumaration State, Seed, dan GameState didefinisikan secara file terpisah

seperti di bawah ini.

package TicTacToe;
/** * Enumeration for the various states of the game */ public enum
GameState { // to save as "GameState.java"

PLAYING, DRAW, CROSS WON, NOUGHT WON

}

package TicTacToe;
/** * Enumeration for the seeds and cell contents */ public enum Seed {
// to save as "Seed.java"

EMPTY, CROSS, NOUGHT

}

package TicTacToe;
/** * Enumeration for the various states of the game */ public enum
State { // to save as "GameState.java"

PLAYING, DRAW, CROSS WON, NOUGHT WON

}

Kemudian diketikkan code untuk class Cell, Board, dan GameMain secara terpisah. Program ketiga

class tersebut dapat dilihat seperti di bawah ini.

Class Cell.java

Code ini dikutip dari:

http://www3.ntu.edu.sg/home/ehchua/programming/java/JavaGame_TicTacToe.html
package TicTacToe;

import java.awt.Graphics;
import java.awt.*;
import java.awt.Graphics2D;

public class Cell {
//content of this cell (Seed.EMPTY, Seed.CROSS, or Seed.NOUGHT)
Seed content;
int row, col; // row and column of this cell

/**Constructor to initialize this cell with the specified row and col */
public Cell(int row, int col) {
this.row = row;
this.col = col;
clear(); // clear content

/** Clear this cell's content to EMPTY */
public void clear () {
content = Seed.EMPTY;

/**Paint itself on the graphics canvas, given the Graphics context */
public void paint (Graphics g) {
// Use Graphics2D which allows us to set the pen's stroke
Graphics2D g2d = (Graphics2D)g;
g2d.setStroke (new BasicStroke (GameMain.SYMBOL STROKE WIDTH,
BasicStroke.CAP ROUND, BasicStroke.JOIN ROUND)) ; // Graphics2D
only N N
// Draw the Seed if it is not empty
int x1 = col * GameMain.CELL SIZE + GameMain.CELL PADDING;
int yl = row * GameMain.CELL SIZE + GameMain.CELL PADDING;

if (content == Seed.CROSS) {
g2d.setColor (Color.RED) ;
int x2 = (col + 1) * GameMain.CELL SIZE - GameMain.CELL PADDING;
int y2 = (row + 1) * GameMain.CELL SIZE - GameMain.CELL PADDING;

g2d.drawLine (x1, yl1, x2, y2);
g2d.drawLine (x2, yl1, x1, y2);
} else if (content == Seed.NOUGHT) {
g2d.setColor (Color.BLUE) ;
g2d.drawOval (x1, yl, GameMain.SYMBOL SIZE, GameMain.SYMBOL SIZE);

Kemudian tuliskan code program untuk Class Board.java untuk membuat dan mengatur papan

permainan tic tac toe.

Class Board.java

package TicTacToe;
import Jjava.awt.*;

/**
* The Board class models the ROWS-by-COLS game-board.
*/
public class Board {
// package access
// composes of 2D array of ROWS-by-COLS Cell instances
Cell[][] cells;

/** Constructor to initialize the game board */

public Board() {

// allocate the array
cells = new Cell[GameMain.ROWS] [GameMain.COLS];
for (int row = 0; row < GameMain.ROWS; ++row) {
for (int col = 0; col < GameMain.COLS; ++col) {
// allocate element of array
cells[row] [col] = new Cell (row, col);

/** Initialize (or re-initialize) the game board */
public void init () {
for (int row = 0; row < GameMain.ROWS; ++row) ({
for (int col = 0; col < GameMain.COLS; ++col) {
// clear the cell content
cells[row] [col].clear();

/** Return true if it is a draw (i.e., no more EMPTY cell) */
public boolean isDraw () {

for (int row = 0; row < GameMain.ROWS; ++row) {
for (int col = 0; col < GameMain.COLS; ++col) {
if (cells[row] [col].content == Seed.EMPTY) {

// an empty seed found, not a draw, exit
return false;

}

return true; // no empty cell, it's a draw

/** Return true if the player with "seed" has won after placing at
(seedRow, seedCol) */

public boolean hasWon (Seed seed, int seedRow, int seedCol) {

return (cells[seedRow] [0].content == seed // 3-in-the-row
&& cells[seedRow] [1].content == seed
&& cells[seedRow] [2] .content == seed
|| cells[0] [seedCol].content == seed // 3-in-the-column

&& cells[1l] [seedCol].content == seed

&& cells[2] [seedCol] .content == seed

| | seedRow == seedCol // 3-in-the-diagonal
&& cells[0][0].content == seed
&& cells[1][1].content == seed
&& cells[2][2].content == seed
| | seedRow + seedCol == // 3-in-the-opposite-diagonal
&& cells[0][2].content == seed
&& cells[1l][1l].content == seed
&& cells[2][0].content == seed);

/** Paint itself on the graphics canvas, given the Graphics context */
public void paint (Graphics g) {
// Draw the grid-lines
g.setColor (Color.GRAY) ;
for (int row = 1; row < GameMain.ROWS; ++row) {
g.fillRoundRect (0, GameMain.CELL SIZE * row -
GameMain.GRID WIDHT HALF,
GameMain.CANVAS WIDTH-1, GameMain.GRID WIDTH,
GameMain.GRID WIDTH, GameMain.GRID WIDTH) ;
}
for (int col = 1; col < GameMain.COLS; ++col) {
g.fillRoundRect (GameMain.CELL SIZE * col -
GameMain.GRID WIDHT HALF, O,
GameMain.GRID WIDTH, GameMain.CANVAS HEIGHT - 1,
GameMain.GRID WIDTH, GameMain.GRID WIDTH) ;

// Draw all the cells
for (int row = 0; row < GameMain.ROWS; ++row) {
for (int col = 0; col < GameMain.COLS; ++col) {
cells[row] [col].paint(g); // ask the cell to paint itself

Kemudian tuliskan code program untuk Class GameMain.java untuk menjalankan permainan tic tac

toe.

Class GameMain.java

package TicTacToe;

import Jjava.awt.*;
import java.awt.event.*;
import javax.swing.*;
/**
* Tic-Tac-Toe: Two-player Graphic version with better OO design.
* The Board and Cell classes are separated in their own classes.
*/
@SuppressWarnings ("serial")
public class GameMain extends JPanel {
// Named-constants for the game board
public static final int ROWS = 3; // ROWS by COLS cells
public static final int COLS 3;

public static final String TITLE = "Tic Tac Toe";

// Name-constants for the various dimensions used for graphics drawing

public static final int CELL SIZE = 100; // cell width and height (square)

public static final int CANVAS WIDTH = CELL SIZE * COLS
canvas

public static final int CANVAS HEIGHT = CELL SIZE * ROWS;

public static final int GRID WIDTH = 8; // Grid-line's width

public static final int GRID WIDHT HALF = GRID WIDTH /

half-width
// Symbols (cross/nought) are displayed inside a cell, with padding from

public static final int CELL PADDING = CELL SIZE / 6;

’

// the drawing

2; // Grid-line's

border

public static final int SYMBOL SIZE = CELL SIZE - CELL PADDING * 2
public static final int SYMBOL STROKE WIDTH = 8; // pen's stroke width

private Board board; // the game board

private GameState currentState;//the current state of the game
private Seed currentPlayer; // the current player
private JLabel statusBar; // for displaying status message

/** Constructor to setup the UI and game components */
public GameMain () {

// This JPanel fires MouseEvent
this.addMouselListener (new MouseAdapter () {
@Override

public void mouseClicked (MouseEvent e) { // mouse-clicked handler

int mouseX = e.getX();
int mouseY = e.getY();
// Get the row and column clicked
int rowSelected = mouseY / CELL SIZE;
int colSelected = mouseX / CELL SIZE;

if (currentState == GameState.PLAYING) {
if (rowSelected >= 0 && rowSelected < ROWS

&& colSelected >= 0 && colSelected < COLS
&& board.cells[rowSelected] [colSelected] .content

Seed.EMPTY) {

board.cells[rowSelected] [colSelected] .content

currentPlayer; // move

updateGame (currentPlayer, rowSelected, colSelected);

update currentState
// Switch player

currentPlayer = (currentPlayer ==
Seed.NOUGHT : Seed.CROSS;
}
} else { // game over
initGame (); // restart the game
;/ Refresh the drawing canvas
repaint () ; // Call-back paintComponent ().
}
1)

// Setup the status bar (JLabel) to display status message
statusBar = new JLabel (" "y ;

Seed.CROSS)

statusBar.setFont (new Font (Font.DIALOG INPUT, Font.BOLD, 14));

statusBar.setBorder (BorderFactory.createEmptyBorder (2,
statusBar.setOpaque (true) ;
statusBar.setBackground (Color.LIGHT GRAY) ;

setLayout (new BorderLayout());

5, 4, 5));

add (statusBar, BorderLayout.PAGE END); // same as SOUTH

setPreferredSize (new Dimension (CANVAS WIDTH, CANVAS HEIGHT + 30));
// account for statusBar in height

board = new Board(); // allocate the game-board
initGame (); // Initialize the game variables

}

/** Initialize the game-board contents and the current-state */
public void initGame () {

for (int row = 0; row < ROWS; ++row) {
for (int col = 0; col < COLS; ++col) {
board.cells[row] [col].content = Seed.EMPTY; // all cells empty

}

currentState = GameState.PLAYING; // ready to play
currentPlayer = Seed.CROSS; // cross plays first

}

/** Update the currentState after the player with "theSeed" has placed on
public void updateGame (Seed theSeed, int row, int col) {
if (board.hasWon (theSeed, row, col)) { // check for win

currentState = (theSeed == Seed.CROSS) ? GameState.CROSS WON
GameState.NOUGHT WON;

} else if (board.isDraw()) { // check for draw
currentState = GameState.DRAW;

(row, col) */

}
// Otherwise, no change to current state (PLAYING).

}

/** Custom painting codes on this JPanel */
@Override

public void paintComponent (Graphics g) {
//invoke via repaint ()

super.paintComponent (g) ; // £i1l background
setBackground (Color .WHITE); // set its background color

board.paint(g); // ask the game board to paint itself

// Print status-bar message

if (currentState == GameState.PLAYING) ({
statusBar.setForeground (Color.BLACK) ;
if (currentPlayer == Seed.CROSS) {

statusBar.setText ("X's Turn");
} else {

statusBar.setText ("O's Turn");
}

} else 1if (currentState == GameState.DRAW) {
statusBar.setForeground (Color.RED) ;
statusBar.setText ("It's a Draw! Click to play again.");

} else if (currentState == GameState.CROSS WON) {

statusBar.setForeground (Color.RED) ;
statusBar.setText ("'X' Won! Click to play again.");
} else if (currentState == GameState.NOUGHT WON) {
statusBar.setForeground (Color.RED) ;
statusBar.setText ("'O' Won! Click to play again.");

}

/** The entry "main" method */

public static void main(String[] args) {
// Run GUI construction codes in Event-Dispatching thread for thread safety
javax.swing.SwingUtilities.invokelater (new Runnable () {

public void run () {
JFrame frame = new JFrame (TITLE) ;

// Set the content-pane of the JFrame to an instance of main JPanel
frame.setContentPane (new GameMain ()):;
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.pack();

// center the application window
frame.setLocationRelativeTo (null);
frame.setVisible (true); // show it

Untuk menjalankan program ini, perlu di-compile dan dijalankan file Java yang berisikan ethod void
main. Pada program ini Java Class GameMain.java yang akan di-compile dan dijalankan. Output dari

program ini menghasilkan GUI tic tac toe seperti Gambar 6.2.

U S S

ANO Tic Tac Toe

O|X[X
X|O[O
XIO[X

It's a Draw! Click to play again. Z

Gambar 6.2. GUI Permainan Tic Tac Toe

6.3.2. Menggunakan Java Applet (JApplet)
Program permainan tic tac toe ini juga dapat dimainkan melalui web browser. Buatlah sebuah
file Java Applet dengan nama AppletMain.java dengan memasukkan class javax.swing.JApplet.

Program file AppletMain.java diimplementasikan seperti berikut.

import javax.swing.*;

/** Tic-tac-toe Applet */
@SuppressWarnings ("serial")
public class AppletMain extends JApplet {
/** init () to setup the GUI components */
@Override
public void init () {
// Run GUI codes in the Event-Dispatching thread for thread safety
try {
// Use invokeAndWait () to ensure that init () exits after GUI construction
SwingUtilities.invokeAndWait (new Runnable () {
@Override
public void run () {
setContentPane (new GameMain()) ;

}

});

} catch (Exception e) {
e.printStackTrace();

}

Terakhir, tuliskan sebuah file HTML dengan nama (misalnya TicTacToe.html) yang menempelkan

Class AppletMain. Berikut code program TicTacToe.html.

<html>

<head>

<title>Tic Tac Toe</title>

</head>
<body>

<h1l>Tic Tac Toe</hl>

<applet code="AppletMain.class" width="300" height="330" alt="Error
Loading Applet?!"> Your browser does not seem to support <APPLET>
tag!

</applet>
</body>
</html>

Tugas:
Tuliskan semua Java Code diatas, kemudian pelajari code nya, dan ubahkan beberapa bagian untuk

melihat perubahannya.

MODUL 7
FIRST ORDER LOGIC

7.1. Tujuan

Memperkenalkan kepada mahasiswa dasar-dasar bahasa pemrograman logic (SWI
PROLOG). Mahasiswa diharapkan mampu menerjemahkan dan mereresentasikan kasus-kasus order
logic ke dalam program komputer; mampu memahami konsep logika proposional (Proposional Logic)

dalam menyelesaikan suatu permasalahan logika.

7.2. Dasar Teori
7.2.1. Logika Proposisi (Propositional Logic)

Logika Proposisi (Propositional Logic) menawarkan logika dalam bentuk sederhana sehingga

mudah dipahami. Meskipun begitu, Logika Proposisi sudah mampu membantu menarik kesimpulan.
Namun, banyak kasus yang muncul akan menjadi terlihat panjang dan rumit saat diwujudkan dalam
bentuk Logika Proposisi. Dan itu bisa lebih panjang dan rumit dibandingkan problem itu sendiri.
Saya ambil contoh berikut ini. Di sebuah kelas Il SD, terdapat 35 siswa. Setiap hari Senin sampai
dengan Kamis, mereka mengenakan seragam merah-putih. Sedangkan hari lain, mereka mengenakan
seragam pramuka. Anak tetanggaku yang bernama Amin, ada salah satu siswa kelas Il SD tersebut.
Hari Rabu pagi kami bertemu saat dia berangkat sekolah. Seragam apa yang dia kenakan?

Bagaimana menyelesaikan contoh tersebut dengan menggunakan Logika Proposisi?

Solusi:

Misalkan:

p: amin adalah siswa kelas Il SD

g: amin mengenakan seragam merah putih

r : hari rabu

Kalimat yang bisa kita nyatakan dari cerita tersebut adalah
1:pAr—q

2:p

3:r

Dengan ekpresi seperti itu, kita sudah bisa menarik kesimpulan tentang Amin. Tetapi banyak
informasi yang tidak dinyatakan dan terlewatkan. Akibatnya, ekspresi tersebut tidak bisa digunakan
untuk membuat kesimpulan tentang seragam yang dipakai Ali pada hari Rabu jika diketahui bahwa
Ali juga seorang siswa kelas SD tersebut. Agar bisa membuat kesimpulan tentang Ali, kita bisa

mengubahnya menjadi seperti di bawah ini:

: plAr—>q
- P2

Tp2Ar—q
- P2

dengan p; berarti “amin adalah anak kelas II SD” dan p, berarti “ali adalah anak kelas II SD”.
Bagaimana jika untuk semua siswa? Kita harus menambahkan lagi kalimat nomor 1 dan 2 dengan
sebelumnya mengubah p; menjadi ps;. Demikian seterusnya sampai pss. Maka akan diperoleh 71

kalimat. Padahal, solusi ini hanya untuk hari Rabu saja, belum hari-hari yang lain.

Predicate: Simbol dengan Parameter

First order Logic menawarkan penggunaan simbol dengan parameter. Simbol ini dikenal
sebagai predikat. Sebuah predikat didefinisikan sebagai atribut(sifat) sebuah obyek atau relasi antar
obyek. Obyek-obyek tersebutlah yang dijadikan sebagai parameter predikat tersebut.
Sebagai contoh, kita kembali ke contoh sebelumnya. Untuk menyelesaikan contoh tersebut, kita
menggunakan simbol p untuk menyatakan atribut seorang siswa kelas Il SD, r untuk menyatakan
atribut nama hari, dan q untuk menyatakan relasi mengenakan seragam. Definisi lengkap setiap

simbol, termasuk parameternya, adalah sebagai berikut:

p(x): x adalah seorang siswa kelas Il SD
r(x): x adalah nama hari

g(x,y) : x mengenakan seragamy.

Dengan definisi tersebut, jika kita ingin mengungkapkan kalimat amin adalah seorang siswa
kelas Il SD, hari rabu, dan amin mengenakan seragam pramuka maka dapat dinyatakan sebagai
berikut:
p(amin)
r(rabu)
g(amin,pramuka)

Quantifier

Selain penggunaan predikat, First Order Logic juga menawarkan quantifier untuk membuat
kalimat logika yang lebih sederhana. Ada 2 jenis quantifier, yaitu universal dan existential. Quatifier
ini berlaku terhadap parameter yang muncul di sebuah kalimat masih dalam bentuk variabel.

Universal quantifier terhadap sebuah variabel x (disimbolkan dengan V¥x) berarti bahwa kalimat

tersebut berlaku untuk setiap obyek X, sedangkan existential quantifier (disimbolkan dengan 3x)

berarti berlaku untuk sebagian obyek saja.

Contoh: Menggunakan definisi untuk p(x), r(x), dan q(x,y), berikut adalah kalimat-kalimat logika
dengan menggunakan quantifier dan artinya:

vx(p(x) A r(rabu) — q(x,merah-putih)) : untuk setiap x, jika x adalah seorang siswa kelas Il SD
dan pada hari Rabu maka x akan mengenakan seragam merah-putih.

Ix(p(x) — —q(x,merah-putih)) : ada x, jika x adalah seorang siswa kelas Il SD maka x tidak

mengenakan seragam merah putih.

7.2.2. Contoh First Order Logic dan Penarikan Kesimpulan

Lihat kembali contoh seragam Amin di atas. Solusi untuk problem di atas adalah sebagai
berikut.
Solusi:

Misalkan:

p(x) : x adalah seorang siswa kelas 11 SD
r(x) : x adalah nama hari

g(x,y) : x mengenakan seragamy.

Kalimat yang bisa kita nyatakan dari cerita tersebut adalah
1: vx(p(x) A r(senin) — q(x,merah-putih))

2 1 YX(p(x) A r(selasa) — q(x,merah-putih))

3 : ¥X(p(x) A r(rabu) — q(x,merah-putih))

4 : ¥X(p(x) A r(kamis) — q(x,merah-putih))
5: ¥X(p(x) A r(jumat) — q(x,pramuka))
6 : VX(p(x) A r(jumat) — q(x,pramuka))

Jika diketahui bahwa Amin adalah seorang siswa kelas Il SD dan hari rabu, maka ditambahkan
kalimat berikut:

7 : p(amin) A r(rabu)

Proses penarikan kesimpulan untuk menjawab pertanyaan apa seragam yang dipakai oleh Amin
pada hari Rabu adalah sebagai berikut:

8 : p(amin) A r(rabu) — q(amin,merah-putih) {Instansiasi x dengan Amin pada kalimat 3}

9 : g(amin,merah-putih) {Modus Ponens antara 7 dan 8}
Arti kalimat 9 adalah Amin mengenakan seragam merah-putih.
—1

Instansiasi: membuang quantifier dan mengganti kemunculan setiap variabel yang terkait dengan
guantifier tersebut dengan sebuah obyek.
Contoh yang lain: Menggunakan contoh seragam siswa kelas Il SD di atas, tetapi yang ditanyakan
adalah apakah Taufig seorang siswa kelas Il SD jika diketahui dia tidak mengenakan seragam
pramuka pada hari Jumat.
Solusi:
Menggunakan definisi sebelumnya, kita tetap memperoleh kalimat logika sebagai berikut:

1 VX(p(x) A r(senin) — q(x,merah-putih))

1 VX(p(x) A r(selasa) — q(x,merah-putih))

1 VX(p(x) A r(rabu) — q(x,merah-putih))

1
2
3
4 : vX(p(x) A r(kamis) — q(x,merah-putih))
5: vX(p(x) A r(jumat) — q(x,pramuka))

6

1 VX(p(x) A r(jumat) — q(x,pramuka))

Diketahui bahwa taufiq tidak mengenakan seragam pramuka pada hari Jumat. Ditambahkan kalimat-

kalimat berikut:

7 : =q(taufig,pramuka)
8 : r(jumat)

Proses penarikan kesimpulan untuk menjawab pertanyaan apa Taufiq seorang siswa kelas Il SD
adalah sebagai berikut:

9 : p(taufiq) A r(jumat) — q(taufiq,pramuka) {Instansiasi x dengan taufiq pada kalimat 5}
10 : =(p(taufiq) A r(jumat)) {Modus Tollens antara 7 dan 9}

11 : =p(taufig) V =r(jumat) {Hukum de Morgan untuk 10}

12 : p(taufiq) — —r(jumat) {Ekuivalensi implikasi dengan 11}

13 : -p(taufig) {Modus Tollens antara 8 dan 12}

Arti kalimat 14 adalah Taufig bukan seorang siswa kelas 11 SD.

7.3. Penggunaan SWI-PROLOG (under MacOS atau LinuX) untuk Kasus First Order

Logic

Kasus 1:

Buka salah satu teks editor (misalnya vi, vim, pico, gedit, notepad, etc), kemudia ketikkan
program berikut dan berikan nama file OrderLogicl.pl pada folder local, (misalnya
/Document/Data/FOL).

p(amin) .

r (rabu) .

g (X, merah-putih) - p(X), r(senin).
g (X,merah-putih) - p(X), r(selasa).
g (X, merah-putih) - p(X), r(rabu).
g(X,merah-putih) - p(X), r(kamis).
g(X,pramuka) :- p(X), r(jumat).
g(X,pramuka) :- p(X), r(sabtu).

Jalankan program SWI-PROLOG melalui “terminal” dengan menuliskan perintah :

IZamanhuri$ /opt/local/bin/swipl <enter>

% library(swi hooks) compiled into pce swi hooks 0.00 sec,
2,284 bytes

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version
5.10.4)

Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This 1is free
software,

and vyou are welcome to redistribute it under <certain
conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word).
?- <kursor>

Setelah masuk ke dalam SWI-PROLOG, jalankan file OrderLogicl.pl dengan menuliskan
perintah dibawah ini pada bagian <kursor>.

?— [‘Orderlogicl.pl’].

% OrderLogicl.pl compiled 0.00 sec, 1,944 bytes
true.

?- g(amin,X) .
X = merah-putih
KESIMPULAN: Si Amin memakai baju merah-putih.

Untuk KELUAR dari program SWI-PROLOH ketikkan.

?- halt.

Kasus 2 :

Buka salah satu teks editor (misalnya vi, vim, pico, gedit, notepad, etc), kemudia ketikkan
program berikut dan berikan nama file OrderLogic2.pl pada folder local, (misalnya
/Document/Data/FOL).

p(amin) .

r (rabu) .

g (X, merah-putih) - p(X), r(senin)

g (X, merah-putih) - p(X), r(selasa).
g(X,merah-putih) - p(X), r(rabu).
g(X,merah-putih) - p(X), r(kamis).
g(X,pramuka) :- p(X), r(jumat).
g(X,pramuka) :- p(X), r(sabtu).

not g(taufiqg,pramuka).
r (jumat) .

Jalankan program SWI-PROLOG melalui “terminal” dengan menuliskan perintah :

IZamanhuri$ /opt/local/bin/swipl <enter>

% library(swi hooks) compiled into pce swi hooks 0.00 sec,
2,284 bytes

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version
5.10.4)

Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This 1is free
software,

and vyou are welcome to redistribute it under <certain
conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word).
?- <kursor>

Setelah masuk ke dalam SWI-PROLOG, jalankan file OrderLogic2.pl dengan menuliskan
perintah dibawah ini pada bagian <kursor>.

?- [‘OrderlLogic2.pl’].
% OrderLogic2.pl compiled 0.00 sec, 1,944 bytes
true.

?- p(taufiq) .
false

Artinya: Si Taufig BUKAN siswa kelas 11 SD.

?7- not(p(taufiq)).

true
Artinya: Si Taufig BUKAN siswa kelas 11 SD.

e Untuk KELUAR dari program SWI-PROLOH ketikkan.

?- halt.

Tugas:
e Buat dan carilah contoh First Order Logic yang lainnya, kemudian implementasikan kasus
tersebut dengan menggunakan SWI-PROLOG.
Implementasikan Kasus “Hukum Pernikahan” (Lihat slide-07) menggunakan program SWI-

PROLOG.

MODUL 8
KNOWLEDGE REPRESENTATION

8.1. Tujuan
Memberikan pemahaman kepada mahasiswa untuk merepresentasikan kasus logik
berdasarkan pengetahuan dengan menggunakan First Order Logic. Modul 8 ini memperlihatkan kasus

Silsilah Keturunan Kerajaan Inggris untuk diimplementasikan dengan menggunakan SWI-PROLOG.

8.2. Dasar Teori

8.2.1. Silsilah Keturunan Kerajaan Inggris
Modul 8 memperlihatkan bentuk silsilah keturunan Kerajaan Inggris. Silsilah keturunan ini
dijabarkan hanya empat level saja, dari keluarga Raja James | sampai dengan cicinya seperti Pangeran

William, Hendry, Peter, dan Lady. Gambar 8.1 memperlihatkan silsilah keturunan Raja Inggris.

*James I »< Margareth

e —————— i +

#Charles I >< Sophia Elizabeth »>< *Phillip
| |
E R — S — + S — bmmmmmmmm————————— R — 4
|
Catherine #Charles II *James II Camila »< *Charles »< Diana Anne >< *Mark *Andrew »< Sarah *Edward >< Sophie
| |
S S + E S + E S————— +
| | |
Catherine »>< *William *Hendry *Peter Zara Beatrice Eugenie Lady

Gambar 8.1 Silsilah Keturunan Kerajaan Inggris.
Keterangan simbol:
e Simbol * merepresentasikan jenis kelamin Laki-laki
e Simbol >< menunjukkan status perkawinan

e Simbol x >< y wanita melambangkan keturunan (anak) dari pasangan x dany.
Dengan menggunakan PROLOG, implementasikanlah beberapa ketentuan berikut:
M adalah ibu dari X jika dia merupakan orangtua dari X dan dia adalah wanita ~ F adalah ayah dari
X jika dia adalah orangtua dari X dan dia adalah laki-laki X adalah saudarakandung Y jika mereka

mempunyai orantua yang sama.

Selanjutnya tambahkanlah dalam program PROLOG Anda beberapa definisi ketentuan-ketentuan

untuk :

"kakak", "abang", "ibutiri", "tantekandung” "tante", "paman", "tantesepupu",

"kakekbuyut" "kakek", "nenek", "sepupu”, "nenekbuyut", “cicit", "cicitperempuan™

Melalui Gambar 8.1 dan program PROLOG, bangkit beberapa pertanyaan (query) berikut ini:

1.

© 0o N o g~ wDh

I N N T i o =
© © O N o O~ W N B O

Apakah George | adalah ayah dari Charles 1?

Siapakah nama ayah Charles 1?

Siapakah nama Ibu Hendry?

Siapakah anak dari Charles?

Apakah Andrew adalah paman William?

Siapakah tante Peter?

Siapakah sepupu Zara?

Siapakah nenek dari William?

Apakah Elizabeth adalah nenek dari William dan Hendry?

. Siapakah kakek dari Peter?

. Siapakah ibutiri William?

. Siapakah abang dari Diana?

. Siapakah kakak dari Andrew?

. Siapakah abang dari James 11?

. Apakah Sarah adalah tante dari Peter?

. Siapakah nenekbuyut dari Hendry?

. Sipakah paman dari Charles?

. Apakah Diana adalah ibu kandung Hendry?
. Siapakah sepupu Hendry?

. Siapakah cicitperempuan dari Elizabeth?

8.3. Implementasi Silsilah Keluarga

Buat dan implementasikan kasus seperti Gambar 8.2 ke dalam program SWI-PROLOG untuk

mengetahui beberapa pertanyaan (query) yang terkait dengan silsilah keluarga dan keturunan dari

pasangan Yuda dan Nina.

[DA I
[[|
| BIGD | DDHA | | AMBAR HARI | | TATARG FARL | | W0 | EXDaH |
BT [[ERD] [AT |
Tl 4 1 ..'.. .'. i . u 1.
)| TEDT FIFET

G A AR TOR
DRANANG

Gambar 8.2 Silsilah Keturunan Yuda dan Nina.

Perintah-perintah
Silahkan dicoba perintah-perintah di bawah ini satu persatu dan lihat hasilnya. kemudian cocokan
jawabanya dengan pohon silsilah keluarga pada gambar diatas.
o married(yuda,X).
e child(rico,X).
e parents(nana,X,Y).
e grandparents(rudi,X,Y).
¢ sibling(danang,X).
o sister(ana,X).
o sister(dita,X).
o brother(tedi,X).
e brother(rudi,X).
Kasus Silsilah Keluarga Yuda & Nina :
o Buka salah satu teks editor (misalnya vi, vim, pico, gedit, notepad, etc), kemudia ketikkan
program berikut dan berikan nama file SilsilahKeluarga.pl pada folder local, (misalnya
/Document/Data/FOL).

married(yuda,nina) .
married(rico,dina).
married (hari, ambar) .
married(tatang, yani).
married (joko, endah) .

child(rico, yuda) .
child (ambar, yuda) .
child(tatang, yuda) .
child (joko, yuda) .
child(budi, rico).
child(ani, rico).
child(ajeng, rico).
child(rani, rico).
child(danang, rico).
child(ika,hari).
child(tuti, hari).
child(rudi, hari).

child(ana,hari) .

child(eko, tatang) .
child(dita, tatang).
child(tedi, tatang) .
child(adi, joko) .

child(nana, joko) .

child(rifki, joko).
child(antok, joko) .

male (yuda) .
male (rico) .
male (hari) .

male (tatang) .
male (joko) .
male (budi)
male (danang) .
male (rudi)
male (eko)
male (tedi)
male (adi)
male (rifki)
male (antok) .

parents (A,B,C) :-child(A,B),married(B,C).

grandparents (A,D,E) :-child(A,B),child(B,D),married(D,E) .
grandparents (A, D, E) -
child(A,B),married(B,C),child(C,D),married(D,E) .

sibling (A,F) :-child(A,B), child(F,B), (F) \== (A&).

sister(A,G) :-child(A,B), child(G,B), (G) \== (A), not(male(G)).
brother (A,H) :-child(A,B), child(H,B), (H) \== (A), male(H).
grandchilds (A,B,C) :- married(A,B), child(C,A).

Jalankan program SWI-PROLOG melalui “terminal” dengan menuliskan perintah :

IZamanhuri$ /opt/local/bin/swipl <enter>

% library(swi hooks) compiled into pce swi hooks 0.00 sec,
2,284 bytes

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version
5.10.4)

Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This 1is free
software,

and vyou are welcome to redistribute it under <certain
conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos (Word).

?- <kursor>

Setelah masuk ke dalam SWI-PROLOG, jalankan file OrderLogicl.pl dengan menuliskan

perintah dibawah ini pada bagian <kursor>.

?—- ['SilsilahKeluarga.pl’].

% SilsilahKeluarga.pl compiled 0.00 sec, 1,944 bytes
true.

?- married(yuda,X) .
X = nina.

?- child(rico,X).
X = yuda.

?- parents (nana,X,Y).
X = joko,
Y endah.

?- grandparents (rudi,X,Y).
X yuda,
Y nina.

?- sibling(danang, X) .
X = budi

?- sister (ana,X).
X = ika .

?- sister(dita,X).
false.

?- brother (tedi, X).
X = eko

?- brother (rudi, X) .
false.

o Untuk KELUAR dari program SWI-PROLOH ketikkan.

?- halt.

Tugas:
e Buat dan implementasikan Silsilah Keturunan Kerajaan Inggris, seperti Gambar 8.1 dan
penjelasan pada subbab 8.2.1 dengan menggunakan SWI-PROLOG.
Bangkitkan semua jawaban dari 20 pertanyaan yang dideskripsikan pada subbab 8.2.1.

