
MODUL PRAKTIKUM

BASIS DATA
PROGRAM STUDI MATEMATIKA

FAKULTAS SAINS DAN TEKNOLOGI
UIN MAULANA MALIK IBRAHIM MALANG

2021

Penyusun
Hisyam Fahmi, M.Kom

Tutorial Database Basis Data Genap 2021/2022

Tutorial DDL Database

Basis Data

Semester Genap 2021/2022

I. Membuat Tabel

Untuk latihan membuat tabel, perhatikan contoh berikut.

Misalkan Anda diminta untuk membuat basis data berdasarkan skema relasional berikut:

SPESIALISASI
Kode_Spesial Spesialis

DOKTER
Id_Dokter Nama_Depan Nama_Belakang Spesialis Alamat No_Telepon Tarif

PASIEN
Id_Pasien Nama_Depan Nama_Belakang Gender Alamat No_Telepon Umur Id_Dokter

Dengan keterangan mengenai atribut tiap tabel adalah sebagai berikut:

Tabel SPESIALISASI

Nama Column Tipe Data Boleh Null PK FK

Kode_Spesial CHAR (5) - √

Spesialis VARCHAR (25) -

Tabel DOKTER

Nama Column Tipe Data Boleh Null PK FK

Id_Dokter CHAR (5) - √

Nama_Depan VARCHAR (15) -

Nama_Belakang VARCHAR (15) √

Spesialis CHAR (5) - Ke Kode_Spesial

di table

SPESIALISASI

Alamat VARCHAR (50) -

No_Telepon VARCHAR (15) √

Tarif NUMERIC (10, 2) -

Tabel PASIEN

Nama Tipe Data Boleh Null PK FK

Id_Pasien CHAR (5) - √

Nama_Depan VARCHAR (15) -

Nama_Belakang VARCHAR (15) √

Gender CHAR (1) -

Alamat VARCHAR (50) √

Tutorial Database Basis Data Genap 2021/2022

No_Telepon VARCHAR (15) √

Umur INT -

Id_Dokter CHAR (5) √
ke Id_Dokter di

tabel DOKTER

Agar tabel-tabel yang Anda buat tertata dengan rapi, maka Anda perlu membuat schema

yang dikhusukan untuk suatu keperluan tertentu. Untuk tabel-tabel di atas, Anda dapat

memasukkan ke dalam schema POLIKLINIK.

II. Membuat Table

Untuk membuat tabel, format sintaks SQL secara umum adalah sebagai berikut:

CREATE TABLE [nama_database.]nama_table(

 nama_atribut1 tipe_atribut1 [NOT NULL],

 nama_atribut2 tipe_atribut2 [NOT NULL],

 :

 PRIMARY KEY (nama_atribut1, . . .)

 FOREIGN KEY (nama_atribut) REFERENCES

 nama_tabel_yang_direfer(nama_atribut_yang_direfer)

 [ON DELETE RESTRICT | CASCADE | SET NULL | SET

DEFAULT][ON UPDATE RESTRICT | CASCADE]

);

Keterangan:

1. Tanda “ [] “ menyatakan pilihan, boleh tidak digunakan

2. Tanda “ : “ menyatakan baris-baris berikutnya serupa dengan baris

sebelumnya

3. Tanda “ | ” menyatakan beberapa pilihan yang dapat digunakan

Sesuai dengan format tersebut, maka SQL untuk membuat tabel SPESIALISASI adalah

sebagai berikut:

CREATE TABLE POLIKLINIK.SPESIALISASI (

 Kode_Spesial CHAR(5) NOT NULL,

 Spesialis VARCHAR(25) NOT NULL,

 PRIMARY KEY (Kode_Spesial)

);

SQL untuk membuat table DOKTER adalah sebagai berikut:

CREATE TABLE POLIKLINIK.DOKTER (

 Id_Dokter CHAR(5) NOT NULL,

 Nama_Depan VARCHAR(15) NOT NULL,

 Nama_Belakang VARCHAR(15),

 Spesialis CHAR(5),

Tutorial Database Basis Data Genap 2021/2022

 Alamat VARCHAR(50) NOT NULL,

 No_Telepon CHAR(15),

 Tarif NUMERIC(10,2) NOT NULL,

 PRIMARY KEY (Id_Dokter),

 FOREIGN KEY (Spesialis) REFERENCES

POLIKLINIK.SPESIALISASI(Kode_Spesial) ON DELETE CASCADE ON

UPDATE CASCADE

);

Sedangkan SQL untuk membuat tabel PASIEN adalah sebagai berikut:

CREATE TABLE POLIKLINIK.PASIEN (

 Id_Pasien CHAR(5) NOT NULL,

 Nama_Depan VARCHAR(15) NOT NULL,

 Nama_Belakang VARCHAR(15),

 Gender CHAR(1) NOT NULL,

 Alamat VARCHAR(50),

 No_Telepon CHAR(15),

 Umur INT NOT NULL,

 Id_Dokter CHAR(5),

 PRIMARY KEY (Id_Pasien),

 FOREIGN KEY (Id_Dokter) REFERENCES

POLIKLINIK.DOKTER(Id_Dokter) ON DELETE CASCADE ON UPDATE

CASCADE

);

Tutorial Database Basis Data Genap 2021/2022

III. Mengisi Tabel

Untuk mengisi tabel, format sintaks SQL secara umum adalah sebagai berikut:

INSERT INTO nama_database.nama_tabel VALUES

(nilai_atribut_1,

..., nilai_atribut_n);

Keterangan:

1. Tanda “[]” menyatakan pilihan, boleh tidak digunakan

2. Tanda “…” menyatakan elemen-elemen berikutnya serupa dengan elemen

sebelumnya

Sesuai dengan format tersebut, maka contoh SQL untuk mengisi tabel SPESIALISASI

adalah sebagai berikut:

INSERT INTO POLIKLINIK.SPESIALISASI VALUES (‘SP001’,

‘Jantung’);

Contoh SQL untuk mengisi tabel DOKTER adalah sebagai berikut:

INSERT INTO POLIKLINIK.DOKTER VALUES (‘DR001’, ‘Syaiful’,

‘Anwar’, ‘SP001’, ‘Jakarta Pusat’, ‘+6281111222’, 150000);

Contoh SQL untuk mengisi tabel PASIEN adalah sebagai berikut:

INSERT INTO POLIKLINIK.PASIEN VALUES (‘P0001’, ‘Ubet’, ‘’,

‘L’, ‘Bandung’, ‘+6282222123’, 21, ‘DR011’);

Lakukan penambahan data sehingga state basis data poliklinik adalah sebagai berikut:

SPESIALISASI

Kode_Spesialis Spesialis

SP001 Jantung

SP006 Bedah

SP005 Saraf

SP007 Mata

SP008 Anak

Tutorial Database Basis Data Genap 2021/2022

DOKTER

Id_Dokter Nama_Depan Nama_Belakang Spesialisasi Alamat No_Telepon Tarif

DR001 Syaiful Anwar SP001 Jakarta
Pusat

+6281111222 150000

DR003 Edi Harto SP006 Bogor +6221211321 200000

DR004 Andrea Dian SP008 Depok +6288899988 100000

DR011 Dewi SP006 Bekasi +6212332111 120000

DR009 Muhammad Ridwan SP001 Depok +625656565 120000

DR012 Agung Pribadi SP005 Jakarta
Pusat

+624545111 180000

DR007 James Bon SP007 Bekasi +620000007 230000
DR010 Ida Nurhaida SP008 Bogor +621921211 70000

PASIEN

Id_Psien Nama_Depan Nama_Belakang Gender Alamat No_Telepon Umur Id_Dokter

P0001 Ubet L Bandung +6282222123 21 DR011

P0003 Juju Jubaidah P Cimahi 70 DR012

P0002 Bon Kurei L Bogor 45 DR001

P0005 Arya Stak P Jakarta +628989898 6 DR004

P0008 Mario Bolateli L Depok +627117213 21 DR007

P0009 Jamal Widodo L Bekasi +622167809 55 DR009
P0010 Kiara P Bogor 4 DR010
P0011 Bondan Prakosa L Jakarta +6200101011 21 DR003
P0013 Gatot Kaca L Solo 45 DR003
P0014 Pipit P +6233333333 23 DR011

IV. Lain-Lain

Untuk melihat keseluruhan isi tabel tertentu dapat dilakukan dengan perintah:

SELECT * FROM [nama_tabel]

Tutorial Database Basis Data Genap 2021/2022

V. Menghapus Data Tabel

Format umum untuk melakukan operasi DELETE adalah sebagai berikut:

DELETE FROM [Nama_DB].NAMA_TABLE [WHERE

CONDITIONAL_STATEMENT];

Jika conditional statement tidak disertakan, seluruh data pada tabel akan dihapus.

Misalnya, dokter James Bon sudah tidak bekerja pada poliklinik lagi. Untuk menghapus

dokter dengan kode nama ‘James Bon’, SQL statement yang dieksekusi adalah:

DELETE FROM POLIKLINIK.DOKTER WHERE Id_Dokter = ‘DR007’;

Satu record akan terhapus. Hal lain yang perlu diperhatikan adalah state dari tabel

PASIEN. Record yang merefer dokter ‘James Bon’ yaitu data pasien ‘Mario Bolateli’ akan

ikut terhapus karena referential constraint ke tabel PASIEN adalah ON DELETE CASCADE.

VI. Mengubah Data Tabel

Format umum untuk melakukan operasi UPDATE adalah sebagai berikut:

UPDATE[Nama_DB].NAMA_TABLE

SET COLUMN1 = VAL1[, COLUMN2 = VAL2, ..., COLUMNN = VALN]

[WHERE CONDITIONAL_STATEMENT];

Misalnya, dokter dengan spesialisasi ‘jantung’ akan dinaiikan tarifnya menjadi 200000.

Perintah update untuk merefleksikan hal ini ke dalam state basis data poliklinik adalah:

UPDATE POLIKLINIK.DOKTER

SET Tarif = 200000

WHERE Spesialis = ‘SP001’;

VII. Modifikasi Definisi Tabel

Modifikasi dapat dilakukan pada tabel yang sudah ada. Salah satunya adalah merubah

tipe data kolom. Misalnya, ada pasien baru yang nama depannya lebih dari 15 karakter.

Untuk menangani masalah ini, tipe data kolom nama_depan pada tabel PASIEN harus

diubah menjadi VARCHAR (20). Hal ini dapat dilakukan dengan perintah:

ALTER TABLE POLIKLINIK.PASIEN ALTER COLUMN Nama_Depan SET

TYPE VARCHAR(20);

Tutorial MySQL Basis Data Genap 2021/2022

Tutorial Basic SQL

Basis Data

Semester Genap 2021/2022

I. Membuat Skema Database

Buatlah database POLIKLINIK sesuai dengan skema relasi berikut:

SPESIALISASI
Kode_Spesial Spesialis

DOKTER
Id_Dokter Nama_Depan Nama_Belakang Spesialis Alamat No_Telepon Tarif

PASIEN
Id_Pasien Nama_Depan Nama_Belakang Gender Alamat No_Telepon Umur

RESEP
Id_Resep Pasien_Id Dokter_Id Tanggal Harga

DETAIL_OBAT
Id_Obat Id_Resep Jumlah

OBAT

Id_Obat Nama_Obat Harga_satuan Kategori

KATEGORI_OBAT
Id_Kategori Kategori

Dengan keterangan mengenai atribut tiap tabel adalah sebagai berikut:

Tabel SPESIALISASI

Nama Column Tipe Data Boleh Null PK FK

Kode_Spesial CHAR (5) - √

Spesialis VARCHAR (25) -

Tutorial MySQL Basis Data Genap 2021/2022

Tabel DOKTER

Nama Column Tipe Data Boleh Null PK FK

Id_Dokter CHAR (5) - √

Nama_Depan VARCHAR (15) -

Nama_Belakang VARCHAR (15) √

Spesialis CHAR (5) √ Ke Kode_Spesial di

table SPESIALISASI

Alamat VARCHAR (50) -

No_Telepon VARCHAR (15) √

Tarif NUMERIC (10, 2) -

Tabel PASIEN

Nama Tipe Data Boleh Null PK FK

Id_Pasien CHAR (5) - √

Nama_Depan VARCHAR (15) -

Nama_Belakang VARCHAR (15) √

Gender CHAR (1) -

Alamat VARCHAR (50) √

No_Telepon VARCHAR (15) √

Umur INT √

Tabel RESEP

Nama Tipe Data Boleh Null PK FK

Id_Resep CHAR (10) - √

Pasien_Id CHAR (5) -
Ke Id_Pasien di

table PASIEN

Dokter_Id CHAR (5) -
Ke Id_Dokter di

table DOKTER

Tanggal DATE -

Harga NUMERIC (10,2) √

Tabel DETAIL_OBAT

Nama Tipe Data Boleh Null PK FK

Id_Obat CHAR (5) - √
Ke Id_Obat di table

OBAT

Id_Resep CHAR (10) - √
Ke Id_Resep di

table RESEP

Jumlah INT -

Tabel OBAT

Nama Tipe Data Boleh Null PK FK

Id_Obat CHAR (5) - √

Nama_Obat VARCHAR (25) -

Harga_Satuan NUMERIC (10,2)
-

Tutorial MySQL Basis Data Genap 2021/2022

Kategori CHAR (5) √

Ke Id_Kategori di

table

KATEGORI_OBAT

Tabel KATEGORI_OBAT

Nama Tipe Data Boleh Null PK FK

Id_Kategori CHAR (5) - √

Kategori VARCHAR (20) -

Isilah tabel-tabel tersebut dengan data sebagai berikut.

SPESIALISASI

Kode_Spesial Spesialis

SP001 Jantung

SP006 Bedah

SP005 Saraf

SP007 Mata

SP008 Anak

DOKTER

Id_Dokter Nama_Depan Nama_Belakang Spesialisasi Alamat No_Telepon Tarif

DR001 Syaiful Anwar SP001 Jakarta
Pusat

+6281111222 150000

DR003 Edi Harto SP006 Bogor +6221211321 200000

DR004 Andrea Dian SP008 Depok +6288899988 100000

DR011 Dewi SP006 Bekasi +6212332111 120000

DR009 Muhammad Ridwan SP001 Depok +625656565 120000

DR012 Agung Pribadi SP005 Jakarta
Pusat

+624545111 180000

DR007 James Bon SP007 Bekasi +620000007 230000
DR010 Ida Nurhaida SP008 Bogor +621921211 70000

PASIEN

Id_Pasien Nama_Depan Nama_Belakang Gender Alamat No_Telepon Umur

P0001 Ubet L Bandung +6282222123 21

P0003 Juju Jubaidah P Cimahi 70

P0002 Bon Kurei L Bogor 45

P0005 Arya Stak P Jakarta +628989898 6

P0008 Mario Bolateli L Depok +627117213 21

P0009 Jamal Widodo L Bekasi +622167809 55
P0010 Kiara P Bogor 4
P0011 Bondan Prakosa L Jakarta +6200101011 21
P0013 Gatot Kaca L Solo 45
P0014 Pipit P +6233333333 23

Tutorial MySQL Basis Data Genap 2021/2022

RESEP

Id_Resep Pasien Dokter Tanggal Harga

R250115001 P0001 DR011 25/1/2015

R250115002 P0009 DR001 25/1/2015

R260115001 P0008 DR007 26/1/2015

R270115001 P0014 DR003 27/1/2015

R300115001 P0010 DR010 30/1/2015

R300115002 P0013 DR003 30/1/2015
R010215001 P0009 DR001 1/2/2015
R010215002 P0003 DR009 1/2/2015
R010215003 P0010 DR010 1/2/2015
R020215001 P0005 DR004 2/2/2015
R020215002 P0009 DR001 2/2/2015
R020215003 P0014 DR012 2/2/2015
R030215001 P0005 DR004 3/2/2015
R030215002 P0003 DR009 3/2/2015

DETAIL_OBAT KATEGORI_OBAT

Id_Obat Id_Resep Jumlah Id_Kategori Kategori

OB013 R250115001 1 OK001 Jantung

OB002 R250115002 5 OK002 Saraf

OB003 R250115002 2 OK003 Infus

OB012 R270115001 1 OK004 Nutrisi

OB015 R300115001 1 OK005 Mata

OB002 R010215001 5
OB001 R010215002 2
OB002 R010215002 4
OB014 R010215003 1
OB016 R020215001 2
OB002 R020215002 3
OB003 R020215002 1
OB007 R020215003 4
OB008 R020215003 6
OB016 R030215001 1
OB003 R030215002 2
OB004 R030215002 4

OBAT

Id_Obat Nama_Obat Harga_Satuan Kategori

OB001 Akrinor Tablet 65000 OK001
OB002 Cardiject Vial 7800 OK001
OB003 Fargoxin Injeksi 21000 OK001
OB004 Kendaron Ampul 20000 OK001
OB005 Tiaryt Tablet 16000 OK001
OB006 Exelon Capsule 3 Mg 70000 OK002
OB007 Fordesia Tablet 79000 OK002
OB008 Reminyl Tablet 4 Mg 33000 OK002
OB009 Albucid Tetes Mata 15000 OK005

http://apotik.medicastore.com/obat/akrinor-tablet
http://apotik.medicastore.com/obat/cardiject-vial
http://apotik.medicastore.com/obat/fargoxin-injeksi
http://apotik.medicastore.com/obat/kendaron-ampul-
http://apotik.medicastore.com/obat/tiaryt-tablet
http://apotik.medicastore.com/obat/exelon-capsule-3-mg
http://apotik.medicastore.com/obat/fordesia-tablet
http://apotik.medicastore.com/obat/reminyl-tablet-4-mg
http://apotik.medicastore.com/obat/albucid-tetes-mata

Tutorial MySQL Basis Data Genap 2021/2022

OB010 Cendo Fenicol Salep Mata 20000 OK005
OB011 Interflox Tetes Mata 36000 OK005
OB012 Haemaccel Infus 200000 OK003
OB013 Human Albumin Infus 900000 OK003
OB014 Curfos Syrup 74000 OK004
OB015 Vitacur Syrup 36000 OK004
OB016 Cerebrovit Active 133000 OK004

II. Basic SQL

Untuk mendapatkan data yang ada di dalam Tabel, dapat digunakan SQL query.

Perintahnya adalah sebagai berikut:

SELECT attribute_list

FROM table_list

[WHERE condition]

[ORDER BY attribute_list];

Misalnya, kita ingin mengetahui nama-nama obat pada kategori obat saraf.

SELECT O.Nama_Obat

FROM OBAT AS O, KATEGORI_OBAT AS KO

WHERE O.Kategori=KO.Id_Kategori AND

LOWER(KO.Kategori)='saraf';

Keterangan: LOWER merupakan fungsi pada MySQL untuk merubah string pada

attribute menjadi huruf kecil semua.

Untuk menampilkan hasil query secara terurut kita bisa menambahkan klausa

ORDER BY diikuti kolom yang diurutkan dan metode pengurutannya, ASC untuk

mengurutkan dari kecil ke besar (dari A-Z) atau DESC untuk sebaliknya. Misalkan,

kita ingin menampilkan nama pasien yang terurut berdasarkan umurnya dari yang

paling muda.

SELECT CONCAT(Nama_Depan, ' ', Nama_Belakang) AS

Nama_Pasien, Umur

FROM PASIEN

ORDER BY Umur ASC;

Keterangan: fungsi “CONCAT()” merupakan perintah untuk menggabungkan string

dalam MySQL.

Untuk melakukan pengecekan terhadap beberapa bagian string saja bisa digunakan

operator LIKE. Misalkan, kita ingin mendapatkan nama dokter yang nomor

teleponnya berawalan ‘+628’.

http://apotik.medicastore.com/obat/cendo-fenicol-salep--mata
http://apotik.medicastore.com/obat/interflox-tetes-mata
http://apotik.medicastore.com/obat/haemaccel-infus-35-500-ml
http://apotik.medicastore.com/obat/human-albumin-infus-20-100-ml-behring
http://apotik.medicastore.com/obat/curfos-syrup
http://apotik.medicastore.com/obat/akrinor-tablet
http://apotik.medicastore.com/obat/cardiject-vial

Tutorial MySQL Basis Data Genap 2021/2022

SELECT CONCAT(Nama_Depan, ' ', Nama_Belakang) AS

Nama_Dokter, No_Telepon

FROM DOKTER

WHERE No_Telepon LIKE ‘+628%’;

Tambahkan keyword DISTINCT untuk menghilangkan duplikasi data hasil query.

Misalkan, kita ingin menampilkan nama pasien yang pernah mendapatkan resep

dari dokter.

SELECT DISTINCT CONCAT(Nama_Depan, ' ', Nama_Belakang) AS

Nama_Pasien

FROM PASIEN, RESEP

WHERE Id_Pasien=Pasien_Id;

Bandingkan dengan hasil query tanpa DISTINCT.

III. Advance SQL

Operasi JOIN

MySQL mendukung operasi INNER JOIN (atau cukup JOIN saja), RIGHT OUTER JOIN,

LEFT OUTER JOIN, FULL OUTER JOIN, dan CROSS JOIN. Misalnya, kita ingin

mengetahui resep mana saja yang dikeluarkan oleh Dr. Syaiful Anwar.

SELECT R.Id_Resep, CONCAT(P.Nama_Depan, ' ',

P.Nama_Belakang) AS Nama_Pasien, R.Tanggal

FROM RESEP R

INNER JOIN DOKTER D ON R.Dokter_Id=D.Id_Dokter

INNER JOIN PASIEN P ON R.Pasien_Id=P.Id_Pasien

WHERE LOWER(D.Nama_Depan)='syaiful' AND

LOWER(D.Nama_Belakang)='anwar';

Operasi Himpunan

MySQL mendukung operasi UNION, INTERSECT, dan EXCEPT. Misalnya, kita ingin

mendapatkan obat jantung yang belum pernah debeli pasien.

(SELECT Nama_Obat

FROM OBAT O, KATEGORI_OBAT KO

WHERE KO.Id_Kategori=O.Kategori AND

LOWER(KO.Kategori)='jantung')

EXCEPT (

 SELECT DISTINCT O.Nama_Obat

Tutorial MySQL Basis Data Genap 2021/2022

 FROM OBAT O, DETAIL_OBAT DT, KATEGORI _OBAT KO

 WHERE O.Id_Obat=DT.Id_Obat AND

KO.Id_Kategori=O.Kategori AND

LOWER(KO.Kategori)='jantung'

);

Fungsi Agregat

PostgreSQL menyediakan aggregate function COUNT, SUM, MAX, MIN, dan AVG.

Contoh aggregate function lain yang disediakan adalah VARIANCE, STDDEV, dan

CORRELATION. Misalnya, kita ingin mengetahui jumlah obat yang terjual

berdasarkan kategorinya.

SELECT KO.Kategori AS Kategori, SUM(DT.Jumlah) AS

Jumlah_Terjual

FROM DETAIL_OBAT DT, OBAT O, KATEGORI_OBAT KO

WHERE DT.Id_Obat=O.Id_Obat AND O.Kategori=KO.Id_Kategori

GROUP BY KO.Kategori;

IV. Latihan Basic Query

1. Buatlah query untuk mengembalikan data obat yang harga satuannya tidak lebih

dari Rp 50.000,00. Tampilkan nama obat, harga, dan nama kategorinya.

2. Buatlah query untuk mengembalikan data pasien yang nama depannya

mengandung huruf ‘o’. Tampilkan semua kolomnya kecuali nomor telepon.

Tutorial MySQL Basis Data Genap 2021/2022

3. Buatlah query untuk mengembalikan data pasien yang berobat pada dokter

spesialis jantung. Tampilkan data nama (nama lengkap), umur, dan nama dokter

yang menangani.

4. Buatlah query untuk menampilkan resep untuk obat ‘Cardiject Vial’. Tampilkan

nomor resep, dan tanggalnya.

5. Buatlah query untuk mengembalikan daftar nama obat yang dalam satu resep

diminta dalam jumlah lebih dari 2. Tampilkan id obat dan nama obatnya tanpa

duplikasi.

Tutorial SQL Basis Data Genap 2021/2022

Tutorial View, Stored Procedure, dan Trigger

Basis Data

Semester Genap 2021/2022

I. SQL

Operasi JOIN

PostgreSQL mendukung operasi INNER JOIN (atau cukup JOIN saja), RIGHT OUTER

JOIN, LEFT OUTER JOIN, FULL OUTER JOIN, NATURAL JOIN, dan CROSS JOIN.

Misalnya, kita ingin mengetahui resep mana saja yang dikeluarkan oleh Dr. Syaiful

Anwar.

SELECT R.Id_Resep, (P.Nama_Depan || ' ' || P.Nama_Belakang) AS

Nama_Pasien, R.Tanggal

FROM RESEP R

INNER JOIN DOKTER D ON R.Dokter_Id=D.Id_Dokter

INNER JOIN PASIEN P ON R.Pasien_Id=P.Id_Pasien

WHERE LOWER(D.Nama_Depan)='syaiful' AND

LOWER(D.Nama_Belakang)='anwar';

Fungsi Agregat

PostgreSQL menyediakan aggregate function COUNT, SUM, MAX, MIN, dan AVG.

Contoh aggregate function lain yang disediakan adalah VARIANCE, STDDEV, dan

CORRELATION. Biasanya fungsi agregat digabungkan dengan klausa GROUP BY

untuk melakukan agregasi berdasarkan kolom tertentu. Misalnya, kita ingin

mengetahui jumlah obat yang terjual berdasarkan kategorinya.

SELECT KO.Kategori AS Kategori, SUM(DT.Jumlah) AS Jumlah_Terjual

FROM DETAIL_OBAT DT, OBAT O, KATEGORI_OBAT KO

WHERE DT.Id_Obat = O.Id_Obat AND O.Kategori = KO.Id_Kategori

GROUP BY KO.Kategori;

II. VIEW

View merupakan sebuah tabel virtual yang dibuat menggunakan SQL query. Untuk

membuat sebuah view, dapat dijalankan sintaks berikut:

CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name [(column_name

[, ...])]

 AS query

Untuk membuat view yang dapat menampilkan daftar obat beserta nama

kategorinya, dapat dilakukan dengan perintah berikut:

Tutorial SQL Basis Data Genap 2021/2022

CREATE VIEW daftar_obat AS

 SELECT O.nama_obat, KO.kategori

 FROM OBAT O, KATEGORI_OBAT KO

 WHERE O.kategori = KO.id_kategori;

Setelah view berhasil dibuat, kita dapat melakukan query terhadap view tersebut

seperti halnya query pada base relation.

Coba lakukan proses insert atau update ke view yang telah dibuat sebelumnya, dan

lihatlah apakah perintah-perintah tersebut dapat dijalankan. Misalnya perintah

insert ke view daftar_obat seperti berikut:

INSERT INTO daftar_obat VALUES ('Tes Obat Baru', 'Saraf');

Sekarang coba tambahkan satu baris ke relasi OBAT, kemudian cek apakah data

baru tersebut bisa dilihat dengan melakukan query terhadap view daftar_obat.

INSERT INTO obat VALUES ('OB100', 'Tes Obat Baru', 100, 'OK002');

SELECT * from DAFTAR_OBAT;

Untuk menghapus view yang telah dibuat, dapat dilakukan dengan perintah DROP

VIEW nama_view;

III. Stored Procedure

Stored Procedure dan fungsi merupakan bagian dari bahasa prosedural di dalam

SQL yang biasa disebut PL/SQL (atau PL/pgSQL dalam Postgre).

Untuk membuat stored procedure dengan PostgreSQL, sintaksnya adalah sebagai

berikut:

CREATE [OR REPLACE] FUNCTION <schema_name>.<function_name>

([[{ IN | OUT | INOUT }] <argument_name1> <argument_type1>, ...])

[RETURNS <return_type>] AS

$$

 [DECLARE

 <variable_name1> <variable_type1>;

 ⁞

]

 BEGIN

 <statements>

 END;

$$

LANGUAGE plpgsql;

Tutorial SQL Basis Data Genap 2021/2022

Misalkan kita ingin menghitung harga total pada relasi RESEP. Maka kita dapat

membuat stored procedure-nya sebagai berikut:

CREATE OR REPLACE FUNCTION hitung_harga (a_resep CHAR(10))

RETURNS NUMERIC(10,2) AS

$$

 DECLARE

 harga_total NUMERIC(10,2);

 BEGIN

 SELECT SUM(jumlah*harga_satuan) INTO harga_total

 FROM DETAIL_OBAT DT, OBAT O

 WHERE DT.id_resep = a_resep AND DT.id_obat = O.id_obat;

 UPDATE resep SET harga = harga_total

 WHERE id_resep = a_resep;

 RETURN harga_total;

 END;

$$

LANGUAGE plpgsql;

Untuk menjalankan stored procedure yang sudah dibuat, dapat dilakukan dengan

perintah berikut:

SELECT <nama_schema>.<nama_fungsi> ([<argument_name1>, …]);

Contoh:

SELECT hitung_harga('R250115002');

Untuk menghitung semua harga total, kita bisa menggunakan looping pada stored

procedure.

CREATE OR REPLACE FUNCTION hitung_semua_harga()

RETURNS void AS

$$

 DECLARE

 row RECORD;

 BEGIN

 FOR row IN

 SELECT R.id_resep, SUM(jumlah*harga_satuan) AS

harga_total

 FROM RESEP R, DETAIL_OBAT DT, OBAT O

 WHERE R.id_resep = DT.id_resep AND DT.id_obat = O.id_obat

 GROUP BY R.id_resep

 LOOP

 UPDATE resep SET harga = row.harga_total

 WHERE id_resep = row.id_resep;

 END LOOP;

 END;

$$

LANGUAGE plpgsql;

Tutorial SQL Basis Data Genap 2021/2022

IV. Trigger

Trigger merupakan operasi pada sebuah tabel yang otomatis dijalankan ketika ada

kejadian tertentu. Format sintaks PL/SQL untuk membuat stored procedure yang

akan dipanggil oleh trigger sama dengan yang digunakan untuk membuat stored

procedure biasa, namun <return_type> selalu bernilai trigger dan tidak boleh

mempunyai argumen. Misalkan kita akan membuat trigger setiap ada kejadian

INSERT, UPDATE, atau DELETE terhadap tabel DETAIL_OBAT, secara otomatis akan

ter-update attribut “harga” pada tabel RESEP.

CREATE OR REPLACE FUNCTION total_harga_resep()

RETURNS trigger AS

$$

 DECLARE

 total NUMERIC(10,2);

 BEGIN

 IF (TG_OP = 'INSERT') THEN

 SELECT NEW.jumlah*O.harga_satuan INTO total

 FROM OBAT O

 WHERE O.id_obat = NEW.id_obat;

 UPDATE resep SET harga = harga+total

 WHERE id_resep = NEW.id_resep;

 RETURN NEW;

 ELSEIF (TG_OP = 'UPDATE') THEN

 SELECT OLD.jumlah*O.harga_satuan INTO total

 FROM OBAT O

 WHERE O.id_obat = OLD.id_obat;

 UPDATE resep SET harga = harga-total

 WHERE id_resep = OLD.id_resep;

 SELECT NEW.jumlah*O.harga_satuan INTO total

 FROM OBAT O

 WHERE O.id_obat = NEW.id_obat;

 UPDATE resep SET harga = harga+total

 WHERE id_resep = NEW.id_resep;

 RETURN NEW;

 ELSEIF (TG_OP = 'DELETE') THEN

 SELECT OLD.jumlah*O.harga_satuan INTO total

 FROM OBAT O

 WHERE O.id_obat = OLD.id_obat;

 UPDATE resep SET harga = harga-total

 WHERE id_resep = OLD.id_resep;

 RETURN OLD;

 END IF;

 END;

$$

LANGUAGE plpgsql;

Tutorial SQL Basis Data Genap 2021/2022

Untuk membuat trigger dengan PostgreSQL, sintaksnya adalah sebagai berikut:

CREATE TRIGGER <trigger_name>

{ BEFORE | AFTER } { INSERT | UPDATE | DELETE [OR ...] }

ON <schema_name>.<table_name> [FOR EACH { ROW | STATEMENT }]

EXECUTE PROCEDURE <function_name> ([<argument_name1>, ...]);

Sesuai dengan format tersebut, maka perintah untuk membuat trigger yang

memanggil stored procedure “total_harga_resep” adalah sebagai berikut.

CREATE TRIGGER jumlah_total_harga

AFTER INSERT OR UPDATE OR DELETE

ON detail_obat FOR EACH ROW

EXECUTE PROCEDURE total_harga_resep();

Untuk memanggil trigger yang telah dibuat, dapat dilakukan dengan menjalankan

event yang memicu trigger tersebut. Misalnya, trigger “jumlah_total_harga” dipanggil

setelah terjadi event INSERT atau UPDATE atau DELETE ke tabel DETAIL_OBAT.

INSERT INTO DETAIL_OBAT VALUES ('OB001', 'R030215002', 5);

Selanjutnya periksalah perubahan yang terjadi pada kolom harga pada table RESEP.

SELECT * FROM RESEP WHERE id_resep = 'R030215002';

Silakan cek juga untuk event update dan delete pada tabel DETAIL_OBAT.

