Hisyam Fahmi, M.Kom

Pengajar Bidang Komputasi dan Pemrograman

NIP. 19890727 201903 1 018

NIP. 19890727 201903 1 018

Pengajar Bidang Keahlian Pemrograman, Image Processing, Machine Learning

Email: hisyam.fahmi@uin-malang.ac.id

S1 Teknik Informatika, Institut Teknologi Sepuluh Nopember (ITS), Surabaya

S2 Ilmu Komputer, Universitas Indonesia (UI), Depok


Publikasi Pilihan

Fitrianah, D., Fahmi, H., Hidayanto, A. N., & Arymurthy, A. M. (2022). Improved partitioning technique for density cube-based spatio-temporal clustering method. Journal of King Saud University-Computer and Information Sciences.
Fitrianah, D., Fahmi, H., Hidayanto, A. N., Tan, P. N., & Arymurthy, A. M. (2021). A non-negative matrix factorization based clustering to identify potential tuna fishing zones. International Journal of Electrical & Computer Engineering (2088-8708), 11(6).
Sari, W. P., & Fahmi, H. (2021). The effect of error level analysis on the image forgery detection using deep learning. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control.
Fahmi, H., & Sari, W. P. (2021, April). Effectiveness of Deep Learning Architecture for Pixel-Based Image Forgery Detection. In International Conference on Engineering, Technology and Social Science (ICONETOS 2020) (pp. 302-307). Atlantis Press.
Harini, S., Fahmi, H., Mulyanto, A. D., & Khudzaifah, M. (2020, February). The earthquake events and impacts mapping in Bali and Nusa Tenggara using a clustering method. In IOP Conference Series: Earth and Environmental Science (Vol. 456, No. 1, p. 012087). IOP Publishing.
Fitrianah, D., & Fahmi, H. (2019). The identification of determinant parameter in forest fire based on feature selection algorithms. Sinergi, 23(3), 184-190.

 

Pendanaan Penelitian

Funder: UIN Maulana Malik Ibrahim Malang research grant
Title: Detection of Modified Images Using Efficient Digital Image Forensic Methods
Period: 2020
Funder: UIN Maulana Malik Ibrahim Malang research grant
Title: Image Processing Approach for Agricultural Image Analysis in Smart Farming Systems
Period: 2022